REFERENCES

1. Korterink JJ, Diederen K, Benninga MA, Tabbers MM. Epidemiology of pediatric functional abdominal pain disorders: a meta-analysis. PLoS One 2015;10:e0126982.

2. Thapar N, Benninga MA, Crowell MD, et al. Paediatric functional abdominal pain disorders. Nat Rev Dis Primers 2020;6:89.

3. Hyams JS, Di Lorenzo C, Saps M, Shulman RJ, Staiano A, van Tilburg M. Functional disorders: children/adolescents. Gastroenterology 2016;150:1456-68.e2.

4. Drossman DA, Hasler WL. Rome IV-functional GI disorders: disorders of gut-brain interaction. Gastroenterology 2016;150:1257-61.

5. Willits AB, Grossi V, Glidden NC, Hyams JS, Young EE. Identification of a pain-specific gene expression profile for pediatric recurrent abdominal pain. Front Pain Res 2021;2:759634.

6. Henström M, D’Amato M. Genetics of irritable bowel syndrome. Mol Cell Pediatr 2016;3:7.

7. Levy RL, Jones KR, Whitehead WE, Feld SI, Talley NJ, Corey LA. Irritable bowel syndrome in twins: heredity and social learning both contribute to etiology. Gastroenterology 2001;121:799-804.

8. Zeevenhooven J, Rutten JMTM, van Dijk M, Peeters B, Benninga MA. Parental factors in pediatric functional abdominal pain disorders: a cross-sectional cohort study. J Pediatr Gastroenterol Nutr 2019;68:e20-6.

9. Jena A, Montoya CA, Mullaney JA, et al. Gut-brain axis in the early postnatal years of life: a developmental perspective. Front Integr Neurosci 2020;14:44.

10. Bradford K, Shih W, Videlock EJ, et al. Association between early adverse life events and irritable bowel syndrome. Clin Gastroenterol Hepatol 2012;10:385-90.e1-3.

11. Uusijärvi A, Bergström A, Simrén M, et al. Use of antibiotics in infancy and childhood and risk of recurrent abdominal pain--a Swedish birth cohort study. Neurogastroenterol Motil 2014;26:841-50.

12. Duan R, Zhu S, Wang B, Duan L. Alterations of gut microbiota in patients with irritable bowel syndrome based on 16S rRNA-targeted sequencing: a systematic review. Clin Transl Gastroenterol 2019;10:e00012.

13. Abomoelak B, Pemberton V, Deb C, et al. The gut microbiome alterations in pediatric patients with functional abdominal pain disorders. Microorganisms 2021;9:2354.

14. Saulnier DM, Riehle K, Mistretta TA, et al. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology 2011;141:1782-91.

15. Hollister EB, Oezguen N, Chumpitazi BP, et al. Leveraging human microbiome features to diagnose and stratify children with irritable bowel syndrome. J Mol Diagn 2019;21:449-61.

16. Rutten JM, Benninga MA, Vlieger AM. IBS and FAPS in children: a comparison of psychological and clinical characteristics. J Pediatr Gastroenterol Nutr 2014;59:493-9.

17. Schmidt SJ, Barblan LP, Lory I, Landolt MA. Age-related effects of the COVID-19 pandemic on mental health of children and adolescents. Eur J Psychotraumatol 2021;12:1901407.

18. Scheeringa M. Young child PTSD checklist. 2013. Available from: https://www.michaelscheeringa.com/uploads/1/2/0/2/120202234/ycpc_2014_5_23.pdf. [Last accessed on 4 Jun 2024].

19. Landolt MA, Schnyder U, Maier T, Schoenbucher V, Mohler-Kuo M. Trauma exposure and posttraumatic stress disorder in adolescents: a national survey in Switzerland. J Trauma Stress 2013;26:209-16.

20. Steinberg AM, Brymer MJ, Kim S, et al. Psychometric properties of the UCLA PTSD reaction index: part I. J Trauma Stress 2013;26:1-9.

21. Paganini D, Uyoga MA, Kortman GAM, et al. Prebiotic galacto-oligosaccharides mitigate the adverse effects of iron fortification on the gut microbiome: a randomised controlled study in Kenyan infants. Gut 2017;66:1956-67.

22. Otaru N, Ye K, Mujezinovic D, et al. GABA production by human intestinal Bacteroides spp.: prevalence, regulation, and role in acid stress tolerance. Front Microbiol 2021;12:656895.

23. Constancias F, Mahé F. Fconstancias/metabaRpipe: v0.9. Zenodo.

24. Didion JP, Martin M, Collins FS. Atropos: specific, sensitive, and speedy trimming of sequencing reads. PeerJ 2017;5:e3720.

25. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 2016;13:581-3.

26. The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207-14.

27. Le Chatelier E, Nielsen T, Qin J, et al; MetaHIT consortium. Richness of human gut microbiome correlates with metabolic markers. Nature 2013;500:541-6.

28. Arumugam M, Raes J, Pelletier E, et al; MetaHIT Consortium. Enterotypes of the human gut microbiome. Nature 2011;473:174-80.

29. The R Project for statistical computing. Available from: https://www.r-project.org/. [Last accessed on 27 May 2024].

30. McLaren M. speedyseq: faster implementations of phyloseq functions. Available from: https://github.com/mikemc/speedyseq. [Last accessed on 27 May 2024].

31. Oksanen J, Simpson GL, Blanchet FG et al. vegan: Community Ecology Package. Available from: https://cran.r-project.org/web/packages/vegan/index.html. [Last accessed on 27 May 2024].

32. Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019;35:526-8.

33. Andersen KS, Kirkegaard RH, Karst SM, Albertsen M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. bioRXiv. [Preprint.] Apr 11, 2018 [accessed 2024 May 27]. Available from: https://www.biorxiv.org/content/10.1101/299537v1.

34. Constancias F, Sundar S. fconstancias/DivComAnalyses: v0.9. Zenodo. 2022. Available from: https://zenodo.org/records/6473394. [Last accessed on 27 May 2024].

35. Mallick H, Rahnavard A, McIver LJ, et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput Biol 2021;17:e1009442.

36. Douglas GM, Maffei VJ, Zaneveld JR, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 2020;38:685-8.

37. Caspi R, Billington R, Ferrer L, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 2016;44:D471-80.

38. Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 2016;65:57-62.

39. Firrman J, Liu L, Mahalak K, et al. The impact of environmental pH on the gut microbiota community structure and short chain fatty acid production. FEMS Microbiol Ecol 2022;98:fiac038.

40. Wickham H, Navarro D, Pedersen TL. ggplot2: elegant graphics for data analysis (3e). New York: Springer. 2016. Available from: https://ggplot2-book.org/. [Last accessed on 27 May 2024].

41. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016;32:2847-9.

42. Melchior M, Kuhn P, Poisbeau P. The burden of early life stress on the nociceptive system development and pain responses. Eur J Neurosci 2022;55:2216-41.

43. Zhong H, Penders J, Shi Z, et al. Impact of early events and lifestyle on the gut microbiota and metabolic phenotypes in young school-age children. Microbiome 2019;7:2.

44. Costea PI, Hildebrand F, Arumugam M, et al. Enterotypes in the landscape of gut microbial community composition. Nat Microbiol 2018;3:8-16.

45. Smith EA, Macfarlane GT. Enumeration of amino acid fermenting bacteria in the human large intestine: effects of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Microbiol Ecol 1998;25:355-68.

46. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505:559-63.

47. Larsen OFA, Claassen E. The mechanistic link between health and gut microbiota diversity. Sci Rep 2018;8:2183.

48. Vijay A, Valdes AM. Role of the gut microbiome in chronic diseases: a narrative review. Eur J Clin Nutr 2022;76:489-501.

49. Kim MH, Yun KE, Kim J, et al. Gut microbiota and metabolic health among overweight and obese individuals. Sci Rep 2020;10:19417.

50. Rigsbee L, Agans R, Shankar V, et al. Quantitative profiling of gut microbiota of children with diarrhea-predominant irritable bowel syndrome. Am J Gastroenterol 2012;107:1740-51.

51. Barandouzi ZA, Lee J, Maas K, Starkweather AR, Cong XS. Altered gut microbiota in irritable bowel syndrome and its association with food components. J Pers Med 2021;11:35.

52. Manor O, Dai CL, Kornilov SA, et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun 2020;11:5206.

53. Mars RAT, Yang Y, Ward T, et al. Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell 2020;182:1460-73.e17.

54. Crowther JS. Sarcina ventriculi in human faeces. J Med Microbiol 1971;4:343-50.

55. Tartaglia D, Coccolini F, Mazzoni A, et al. Sarcina ventriculi infection: a rare but fearsome event. a systematic review of the literature. Int J Infect Dis 2022;115:48-61.

56. Guandalini S, Magazzù G, Chiaro A, et al. VSL#3 improves symptoms in children with irritable bowel syndrome: a multicenter, randomized, placebo-controlled, double-blind, crossover study. J Pediatr Gastroenterol Nutr 2010;51:24-30.

57. Giannetti E, Maglione M, Alessandrella A, et al. A mixture of 3 bifidobacteria decreases abdominal pain and improves the quality of life in children with irritable bowel syndrome: a multicenter, randomized, double-blind, placebo-controlled, crossover trial. J Clin Gastroenterol 2017;51:e5-10.

58. Guglielmetti S, Mora D, Gschwender M, Popp K. Randomised clinical trial: Bifidobacterium bifidum MIMBb75 significantly alleviates irritable bowel syndrome and improves quality of life--a double-blind, placebo-controlled study. Aliment Pharmacol Ther 2011;33:1123-32.

59. Ventura M, Canchaya C, Casale AD, et al. Analysis of bifidobacterial evolution using a multilocus approach. Int J Syst Evol Microbiol 2006;56:2783-92.

60. Alessandri G, van Sinderen D, Ventura M. The genus bifidobacterium: from genomics to functionality of an important component of the mammalian gut microbiota running title: Bifidobacterial adaptation to and interaction with the host. Comput Struct Biotechnol J 2021;19:1472-87.

61. Johnson JS, Spakowicz DJ, Hong BY, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 2019;10:5029.

62. Bosch S, van Gaal N, Zuurbier RP, et al. Differentiation between pediatric irritable bowel syndrome and inflammatory bowel disease based on fecal scent: proof of principle study. Inflamm Bowel Dis 2018;24:2468-75.

63. Shankar V, Homer D, Rigsbee L, et al. The networks of human gut microbe-metabolite associations are different between health and irritable bowel syndrome. ISME J 2015;9:1899-903.

64. Roswall J, Olsson LM, Kovatcheva-Datchary P, et al. Developmental trajectory of the healthy human gut microbiota during the first 5 years of life. Cell Host Microbe 2021;29:765-76.e3.

65. Tang Q, Jin G, Wang G, et al. Current sampling methods for gut microbiota: a call for more precise devices. Front Cell Infect Microbiol 2020;10:151.

66. Dieterich W, Schink M, Zopf Y. Microbiota in the gastrointestinal tract. Med Sci 2018;6:116.

67. Falony G, Joossens M, Vieira-Silva S, et al. Population-level analysis of gut microbiome variation. Science 2016;352:560-4.

68. Erben V, Poschet G, Schrotz-King P, Brenner H. Evaluation of different stool extraction methods for metabolomics measurements in human faecal samples. BMJ Nutr Prev Health 2021;4:374-84.

69. Cui M, Trimigno A, Castro-Mejía JL, et al. Human fecal metabolome reflects differences in body mass index, physical fitness, and blood lipoproteins in healthy older adults. Metabolites 2021;11:717.

70. Heim C. Stress, early life. In: Gellman MD, Turner JR, editors. Encyclopedia of behavioral medicine. New York: Springer; 2013. pp. 1903-6.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/