REFERENCES

1. West SA, Diggle SP, Buckling A, Gardner A, Griffin AS. The social lives of microbes. Annu Rev Ecol Evol Syst 2007;38:53-77.

2. Klawonn I, Bonaglia S, Whitehouse MJ, et al. Untangling hidden nutrient dynamics: rapid ammonium cycling and single-cell ammonium assimilation in marine plankton communities. ISME J 2019;13:1960-74.

3. Brileya KA, Camilleri LB, Zane GM, Wall JD, Fields MW. Biofilm growth mode promotes maximum carrying capacity and community stability during product inhibition syntrophy. Front Microbiol 2014;5:693.

4. Baldini F, Heinken A, Heirendt L, Magnusdottir S, Fleming RMT, Thiele I. The Microbiome Modeling Toolbox: from microbial interactions to personalized microbial communities. Bioinformatics 2019;35:2332-4.

5. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. Erratum for Abisado et al., “Bacterial quorum sensing and microbial community interactions”. mBio 2018;9:e01749-18.

6. Peng X, Gilmore SP, O’malley MA. Microbial communities for bioprocessing: lessons learned from nature. Curr Opin Chem Eng 2016;14:103-9.

7. Momeni B, Brileya KA, Fields MW, Shou W. Strong inter-population cooperation leads to partner intermixing in microbial communities. Elife 2013;2:e00230.

8. Graham AE, Ledesma-Amaro R. The microbial food revolution. Nat Commun 2023;14:2231.

9. Legras JL, Merdinoglu D, Cornuet JM, Karst F. Bread, beer and wine: saccharomyces cerevisiae diversity reflects human history. Mol Ecol 2007;16:2091-102.

10. Nai C, Meyer V. From axenic to mixed cultures: technological advances accelerating a paradigm shift in microbiology. Trends Microbiol 2018;26:538-54.

11. Vu CHT, Lee HG, Chang YK, Oh HM. Axenic cultures for microalgal biotechnology: establishment, assessment, maintenance, and applications. Biotechnol Adv 2018;36:380-96.

12. Qian X, Chen L, Sui Y, et al. Biotechnological potential and applications of microbial consortia. Biotechnol Adv 2020;40:107500.

13. Zhang H, Pereira B, Li Z, Stephanopoulos G. Engineering Escherichia coli coculture systems for the production of biochemical products. Proc Natl Acad Sci U S A 2015;112:8266-71.

14. Zhang H, Li Z, Pereira B, Stephanopoulos G. Engineering E. coli-E. coli cocultures for production of muconic acid from glycerol. Microb Cell Fact 2015;14:134.

15. Wang J, Lin W, Wray V, Lai D, Proksch P. Induced production of depsipeptides by co-culturing Fusarium tricinctum and Fusarium begoniae. Tetrahedron Lett 2013;54:2492-6.

16. Charusanti P, Fong NL, Nagarajan H, et al. Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction. PLoS One 2012;7:e33727.

17. Wen Z, Minton NP, Zhang Y, et al. Enhanced solvent production by metabolic engineering of a twin-clostridial consortium. Metab Eng 2017;39:38-48.

18. Shahab RL, Luterbacher JS, Brethauer S, Studer MH. Consolidated bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consortium. Biotechnol Bioeng 2018;115:1207-15.

19. Kip N, van Winden JF, Pan Y, et al. Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nature Geosci 2010;3:617-21.

20. Milucka J, Kirf M, Lu L, et al. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME J 2015;9:1991-2002.

21. Raghoebarsing AA, Smolders AJP, Schmid MC, et al. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 2005;436:1153-6.

22. Badr K, He QP, Wang J. A novel semi-structured kinetic model of methanotroph-photoautotroph cocultures for biogas conversion. Chem Eng J 2022;431:133461.

23. Roberts N, Hilliard M, He QP, Wang J. A microalgae-methanotroph coculture is a promising platform for fuels and chemical production from wastewater. Front Energy Res 2020;8:563352.

24. Badr K, Hilliard M, Roberts N, He QP, Wang J. Photoautotroph-methanotroph coculture - a flexible platform for efficient biological CO2-CH4 co-utilization. IFAC PapersOnLine 2019;52:916-21.

25. Rasouli Z, Valverde-Pérez B, D’Este M, De Francisci D, Angelidaki I. Nutrient recovery from industrial wastewater as single cell protein by a co-culture of green microalgae and methanotrophs. Biochem Eng J 2018;134:129-35.

26. Kapoor R, Ghosh P, Tyagi B, et al. Advances in biogas valorization and utilization systems: a comprehensive review. J Clean Prod 2020;273:123052.

27. van der Ha D, Nachtergaele L, Kerckhof FM, et al. Conversion of biogas to bioproducts by algae and methane oxidizing bacteria. Environ Sci Technol 2012;46:13425-31.

28. Mishra A, Kumar M, Bolan NS, Kapley A, Kumar R, Singh L. Multidimensional approaches of biogas production and up-gradation: opportunities and challenges. Bioresour Technol 2021;338:125514.

29. Robinson CJ, Bohannan BJ, Young VB. From structure to function: the ecology of host-associated microbial communities. Microbiol Mol Biol Rev 2010;74:453-76.

30. Boon E, Meehan CJ, Whidden C, Wong DH, Langille MG, Beiko RG. Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol Rev 2014;38:90-118.

31. Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. Microbiome 2018;6:58.

32. Mathis KA, Bronstein JL. Our current understanding of commensalism. Annu Rev Ecol Evol Syst 2020;51:167-89.

33. Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 2011;9:279-90.

34. Orland C, Emilson EJS, Basiliko N, Mykytczuk NCS, Gunn JM, Tanentzap AJ. Microbiome functioning depends on individual and interactive effects of the environment and community structure. ISME J 2019;13:1-11.

35. Franzosa EA, Hsu T, Sirota-Madi A, et al. Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol 2015;13:360-72.

36. Sunagawa S, Coelho LP, Chaffron S, et al; Tara Oceans coordinators. Ocean plankton. Structure and function of the global ocean microbiome. Science 2015;348:1261359.

37. Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 2017;15:579-90.

38. Campanaro S, Treu L, Rodriguez-R LM, et al. New insights from the biogas microbiome by comprehensive genome-resolved metagenomics of nearly 1600 species originating from multiple anaerobic digesters. Biotechnol Biofuels 2020;13:25.

39. Heinken A, Basile A, Thiele I. Advances in constraint-based modelling of microbial communities. Curr Opin Syst Biol 2021;27:100346.

40. Roume H, Heintz-Buschart A, Muller EEL, et al. Comparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks. NPJ Biofilms Microbiomes 2015;1:15007.

41. Muller EE, Glaab E, May P, Vlassis N, Wilmes P. Condensing the omics fog of microbial communities. Trends Microbiol 2013;21:325-33.

42. O’Brien EJ, Monk JM, Palsson BO. Using genome-scale models to predict biological capabilities. Cell 2015;161:971-87.

43. Sen P, Orešič M. Metabolic modeling of human gut microbiota on a genome scale: an overview. Metabolites 2019;9:22.

44. Palsson BØ. Systems biology: properties of reconstructed networks. Cambridge university press; 2006. Available from: https://books.google.com/books/about/Systems_Biology.html?id=Q-EvI9j0B7YC. [Last accessed on 23 May 2024].

45. Dahal S, Yurkovich JT, Xu H, Palsson BO, Yang L. Synthesizing systems biology knowledge from omics using genome-scale models. Proteomics 2020;20:e1900282.

46. Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol 2010;28:245-8.

47. Chan SHJ, Simons MN, Maranas CD. SteadyCom: predicting microbial abundances while ensuring community stability. PLoS Comput Biol 2017;13:e1005539.

48. Zomorrodi AR, Maranas CD. OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput Biol 2012;8:e1002363.

49. Thiele I, Heinken A, Fleming RM. A systems biology approach to studying the role of microbes in human health. Curr Opin Biotechnol 2013;24:4-12.

50. Khandelwal RA, Olivier BG, Röling WF, Teusink B, Bruggeman FJ. Community flux balance analysis for microbial consortia at balanced growth. PLoS One 2013;8:e64567.

51. Zomorrodi AR, Islam MM, Maranas CD. d-OptCom: dynamic multi-level and multi-objective metabolic modeling of microbial communities. ACS Synth Biol 2014;3:247-57.

52. Gottstein W, Olivier BG, Bruggeman FJ, Teusink B. Constraint-based stoichiometric modelling from single organisms to microbial communities. J R Soc Interface 2016;13:20160627.

53. Mahadevan R, Edwards JS, Doyle FJ 3rd. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 2002;83:1331-40.

54. Zhuang K, Izallalen M, Mouser P, et al. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 2011;5:305-16.

55. Badr K, He QP, Wang J. Understanding the evolution of interspecies metabolic interactions using dynamic genome-scale metabolic modeling. In: 2022 American Control Conference (ACC); 2022 Jun 08-10; Atlanta, USA. IEEE; 2022. pp. 450-5.

56. de la Torre A, Metivier A, Chu F, et al. Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1). Microb Cell Fact 2015;14:188.

57. Yoshikawa K, Aikawa S, Kojima Y, et al. Construction of a genome-scale metabolic model of Arthrospira platensis NIES-39 and metabolic design for cyanobacterial bioproduction. PLoS One 2015;10:e0144430.

58. Damiani A, He QP, Wang J. A system identification based framework for genome-scale metabolic model validation and refinement. IFAC PapersOnLine 2017;50:12502-7.

59. Gilman A, Fu Y, Hendershott M, et al. Oxygen-limited metabolism in the methanotroph Methylomicrobium buryatense 5GB1C. PeerJ 2017;5:e3945.

60. Stone K, Hilliard M, Badr K, Bradford A, He QP, Wang J. Comparative study of oxygen-limited and methane-limited growth phenotypes of Methylomicrobium buryatense 5GB1. Biochem Eng J 2020;161:107707.

61. Yoshikawa K, Toya Y, Shimizu H. Metabolic engineering of Synechocystis sp. PCC 6803 for enhanced ethanol production based on flux balance analysis. Bioprocess Biosyst Eng 2017;40:791-6.

62. Peltier G, Aro EM, Shikanai T. NDH-1 and NDH-2 plastoquinone reductases in oxygenic photosynthesis. Annu Rev Plant Biol 2016;67:55-80.

63. Heinken A, Thiele I. Anoxic conditions promote species-specific mutualism between gut microbes in silico. Appl Environ Microbiol 2015;81:4049-61.

64. Fu Y, Li Y, Lidstrom M. The oxidative TCA cycle operates during methanotrophic growth of the Type I methanotroph Methylomicrobium buryatense 5GB1. Metab Eng 2017;42:43-51.

65. Nguyen DTN, Lee OK, Hadiyati S, Affifah AN, Kim MS, Lee EY. Metabolic engineering of the type I methanotroph Methylomonas sp. DH-1 for production of succinate from methane. Metab Eng 2019;54:170-9.

66. Wang JH, Zhang TY, Dao GH, Xu XQ, Wang XX, Hu HY. Microalgae-based advanced municipal wastewater treatment for reuse in water bodies. Appl Microbiol Biotechnol 2017;101:2659-75.

67. Zhang B, Li W, Guo Y, et al. Microalgal-bacterial consortia: from interspecies interactions to biotechnological applications. Renew Sustain Energy Rev 2020;118:109563.

68. Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS. Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv 2016;34:14-29.

69. de-Bashan LE, Mayali X, Bebout BM, et al. Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (fluorescent in situ hybridization). Algal Res 2016;15:179-86.

70. Crable BR, Plugge CM, McInerney MJ, Stams AJ. Formate formation and formate conversion in biological fuels production. Enzyme Res 2011;2011:532536.

71. Riccardi G, de Rossi E, Milano A. Amino acid biosynthesis and its regulation in cyanobacteria. Plant Science 1989;64:135-51.

72. Zhu J, Xu X, Yuan M, Wu H, Ma Z, Wu W. Optimum O2:CH4 ratio promotes the synergy between aerobic methanotrophs and denitrifiers to enhance nitrogen removal. Front Microbiol 2017;8:1112.

73. Renslow RS, Lindemann SR, Cole JK, Zhu Z, Anderton CR. Quantifying element incorporation in multispecies biofilms using nanoscale secondary ion mass spectrometry image analysis. Biointerphases 2016;11:02A322.

74. Oosthuizen JR, Naidoo RK, Rossouw D, Bauer FF. Evolution of mutualistic behaviour between Chlorella sorokiniana and Saccharomyces cerevisiae within a synthetic environment. J Ind Microbiol Biotechnol 2020;47:357-72.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/