REFERENCES
1. Blakley RL. Nomenclature and symbols for folic acid and related compounds. Eur J Biochem 1987;168:251-3.
2. Scaglione F, Panzavolta G. Folate, folic acid and 5-methyltetrahydrofolate are not the same thing. Xenobiotica 2014;44:480-8.
3. de Giori GS, Leblanc JG. Chapter 2 - folate production by lactic acid bacteria. In: Watson RR, Preedy VR, Zibadi S, editors. Polyphenols: prevention and treatment of human disease. Elsevier; 2018. pp. 15-29.
4. Katan MB, Boekschoten MV, Connor WE, et al. Which are the greatest recent discoveries and the greatest future challenges in nutrition? Eur J Clin Nutr 2009;63:2-10.
5. LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 2013;24:160-8.
6. Mosley BS, Cleves MA, Siega-Riz AM, et al. National Birth Defects Prevention Study. Neural tube defects and maternal folate intake among pregnancies conceived after folic acid fortification in the United States. Am J Epidemiol 2009;169:9-17.
7. Hjortmo S, Patring J, Jastrebova J, Andlid T. Inherent biodiversity of folate content and composition in yeasts. Trends Food Sci Technol 2005;16:311-6.
8. Lattof SR, Tunçalp Ö, Moran AC, et al. Developing measures for WHO recommendations on antenatal care for a positive pregnancy experience: a conceptual framework and scoping review. BMJ Open 2019;9:e024130.
9. Fan G, Song L, Liu Q, et al. Association of maternal folic acid supplementation during pregnancy with newborn telomere length. Reprod Toxicol 2022;114:52-6.
10. Pieroth R, Paver S, Day S, Lammersfeld C. Folate and its impact on cancer risk. Curr Nutr Rep 2018;7:70-84.
11. Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for folate. EFSA J 2014;12:3893.
12. Hjortmo S, Patring J, Jastrebova J, Andlid T. Biofortification of folates in white wheat bread by selection of yeast strain and process. Int J Food Microbiol 2008;127:32-6.
13. Wong CB, Sugahara H, Odamaki T, Xiao JZ. Different physiological properties of human-residential and non-human-residential bifidobacteria in human health. Benef Microbes 2018;9:111-22.
14. Patring JDM, Hjortmo SB, Jastrebova JA, Svensson UK, Andlid TA, Jägerstad IM. Characterization and quantification of folates produced by yeast strains isolated from kefir granules. Eur Food Res Technol 2006;223:633-7.
15. Hjortmo SB, Hellström AM, Andlid TA. Production of folates by yeasts in Tanzanian fermented togwa. FEMS Yeast Res 2008;8:781-7.
16. Wills L. Treatment of “pernicious anaemia of pregnancy” and “tropical anaemia”. Br Med J 1931;1:1059-64.
17. Mitchell HK, Snell EE, Williams RJ. The concentration of “folic acid”. J Am Chem Soc 1941;63:2284.
18. Burg AW, Brown GM. The biosynthesis of folic acid. VIII. Purification and properties of the enzyme that catalyzes the production of formate from carbon atom 8 of guanosine triphosphate. J Biol Chem 1968;243:2349-58.
19. Richey DP, Brown GM. The biosynthesis of folic acid. IX. Purification and properties of the enzymes required for the formation of dihydropteroic acid. J Biol Chem 1969;244:1582-92.
20. Shiota T, Baugh CM, Jackson R, Dillard R. The enzymatic synthesis of hydroxymethyldihydropteridine pyrophosphate and dihydrofolate. Biochemistry 1969;8:5022-8.
22. Gregory J. Vitamins. In: Damodaran S, Parkin KL, eds. Food chemistry. CRC Press; 2017. pp. 543-626.
23. Hasan T, Arora R, Bansal AK, Bhattacharya R, Sharma GS, Singh LR. Disturbed homocysteine metabolism is associated with cancer. Exp Mol Med 2019;51:1-13.
25. Friedrich W. Folic acid and unconjugates pteridines (Chaper 10). In: De Gruyter W, editor. Vitamins. Berlin: De Gruyter; 1988. pp. 619-752. Available from: https://books.google.it/books?id=VS9YWqnMpNsC&printsec=frontcover&hl=it&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false. [Last accessed on 11 Dec 2023].
26. Qiu A, Jansen M, Sakaris A, et al. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 2006;127:917-28.
27. Wan Q, Bennett BC, Wilson MA, et al. Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography. Proc Natl Acad Sci U S A 2014;111:18225-30.
28. Gregory JF 3rd, Williamson J, Liao JF, Bailey LB, Toth JP. Kinetic model of folate metabolism in nonpregnant women consuming
29. Herbert V. The 1986 Herman award lecture. Nutrition science as a continually unfolding story: the folate and vitamin B-12 paradigm. Am J Clin Nutr 1987;46:387-402.
31. Bailey LB. Folate in health and disease. CRC Press; 1995. pp. 1-22. Available from: http://repository.universitasbumigora.ac.id/862/732/216%20Folate%20in%20Health%20and%20Disease%2C%20Second%20Edition%20%20%28%20PDFDrive%20%29.pdf. [Last accessed on 4 Dec 2023].
32. Laanpere M, Altmäe S, Stavreus-Evers A, Nilsson TK, Yngve A, Salumets A. Folate-mediated one-carbon metabolism and its effect on female fertility and pregnancy viability. Nutr Rev 2010;68:99-113.
33. Shane B, Stokstad ELR. Transport and metabolism of folates by bacteria. J Biol Chem 1975;250:2243-53.
34. Zhao R, Min SH, Wang Y, Campanella E, Low PS, Goldman ID. A role for the proton-coupled folate transporter (PCFT-SLC46A1) in folate receptor-mediated endocytosis. J Biol Chem 2009;284:4267-74.
35. Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metab 2017;25:27-42.
37. Lucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab 2000;71:121-38.
38. Jägerstad M, Jastrebova J. Occurrence, stability, and determination of formyl folates in foods. J Agric Food Chem 2013;61:9758-68.
39. Strandler HS, Patring J, Jägerstad M, Jastrebova J. Challenges in the determination of unsubstituted food folates: impact of stabilities and conversions on analytical results. J Agric Food Chem 2015;63:2367-77.
40. De Brouwer V, Storozhenko S, Van De Steene JC, et al. Optimisation and validation of a liquid chromatography-tandem mass spectrometry method for folates in rice. J Chromatogr A 2008;1215:125-32.
41. Matella NJ, Braddock RJ, Gregory JF 3rd, Goodrich RM. Capillary electrophoresis and high-performance liquid chromatography determination of polyglutamyl 5-methyltetrahydrofolate forms in citrus products. J Agric Food Chem 2005;53:2268-74.
43. McKillop DJ, Pentieva K, Daly D, et al. The effect of different cooking methods on folate retention in various foods that are amongst the major contributors to folate intake in the UK diet. Br J Nutr 2002;88:681-8.
44. Horne DW. High-performance liquid chromatographic measurement of 5,10-methylenetetrahydrofolate in liver. Anal Biochem 2001;297:154-9.
45. O’Broin JD, Temperley IJ, Brown JP, Scott JM. Nutritional stability of various naturally occurring monoglutamate derivatives of folic acid. Am J Clin Nutr 1975;28:438-44.
46. Forssén KM, Jägerstad MI, Wigertz K, Witthöft CM. Folates and dairy products: a critical update. J Am Coll Nutr 2000;19:100S-10S.
47. Scott J, Rébeillé F, Fletcher J. Folic acid and folates: the feasibility for nutritional enhancement in plant foods. J Sci Food Agric 2000;80:795-824.
48. Andlid TA, D’Aimmo MR, Jastrebova J. Folate and bifidobacteria. In: Mattarelli P, Biavati B, Holzapfel WH, Wood BJB, editors. The bifidobacteria and related organisms. Academic Press; 2018. pp. 195-212
50. Patring JD, Jastrebova JA, Hjortmo SB, Andlid TA, Jägerstad IM. Development of a simplified method for the determination of folates in baker’s yeast by HPLC with ultraviolet and fluorescence detection. J Agric Food Chem 2005;53:2406-11.
51. Scorrano G, Nielsen SH, Vetro DL, et al. Genomic ancestry, diet and microbiomes of Upper Palaeolithic hunter-gatherers from San Teodoro cave. Commun Biol 2022;5:1262.
52. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016;14:e1002533.
53. Hou K, Wu ZX, Chen XY, et al. Microbiota in health and diseases. Signal Transduct Target Ther 2022;7:135.
54. Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019;7:14.
55. Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the gut microbiome. Cell 2014;159:789-99.
56. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 2009;1:6ra14.
57. Zhernakova A, Kurilshikov A, Bonder MJ, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 2016;352:565-9.
58. D’Aimmo MR, Modesto M, Mattarelli P, Biavati B, Andlid T. Biosynthesis and cellular content of folate in bifidobacteria across host species with different diets. Anaerobe 2014;30:169-77.
59. Asrar FM, O’Connor DL. Bacterially synthesized folate and supplemental folic acid are absorbed across the large intestine of piglets. J Nutr Biochem 2005;16:587-93.
60. Kim TH, Yang J, Darling PB, O’Connor DL. A large pool of available folate exists in the large intestine of human infants and piglets. J Nutr 2004;134:1389-94.
61. Thomas CM, Saulnier DMA, Spinler JK, et al. FolC2-mediated folate metabolism contributes to suppression of inflammation by probiotic Lactobacillus reuteri. Microbiologyopen 2016;5:802-18.
62. Meucci A, Rossetti L, Zago M, et al. Folates biosynthesis by Streptococcus thermophilus during growth in milk. Food Microbiol 2018;69:116-22.
63. Said HM, Mohammed ZM. Intestinal absorption of water-soluble vitamins: an update. Curr Opin Gastroenterol 2006;22:140-6.
64. LeBlanc JG, Laiño JE, del Valle MJ, et al. B-group vitamin production by lactic acid bacteria--current knowledge and potential applications. J Appl Microbiol 2011;111:1297-309.
65. Rossi M, Amaretti A, Raimondi S. Folate production by probiotic bacteria. Nutrients 2011;3:118-34.
66. Mosso AL, Leblanc JG, Motta C, Castanheira I, Ribotta P, Sammán N. Effect of fermentation in nutritional, textural and sensorial parameters of vegan-spread products using a probiotic folate-producing Lactobacillus sakei strain. LWT 2020;127:109339.
67. Deguchi Y, Morishita T, Mutai M. Comparative studies on synthesis of water-soluble vitamins among human species of bifidobacteria. Agric Biol Chem 1985;49:13-9.
68. de Bree A, van Dusseldorp M, Brouwer IA, van het Hof KH, Steegers-Theunissen RP. Folate intake in Europe: recommended, actual and desired intake. Eur J Clin Nutr 1997;51:643-60.
69. White RH. Purine biosynthesis in the domain Archaea without folates or modified folates. J Bacteriol 1997;179:3374-7.
70. Engevik MA, Morra CN, Röth D, et al. Microbial metabolic capacity for intestinal folate production and modulation of host folate receptors. Front Microbiol 2019;10:2305.
71. Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet 2015;6:148.
72. Alessandri G, van Sinderen D, Ventura M. The genus Bifidobacterium: from genomics to functionality of an important component of the mammalian gut microbiota. Comput Struct Biotechnol J 2021;19:1472-87.
73. Michelini S, Modesto M, Oki K, et al. Isolation and identification of cultivable Bifidobacterium spp. from the faeces of 5 baby common marmosets (Callithrix jacchus L.). Anaerobe 2015;33:101-4.
74. D’Aimmo MR, Mattarelli P, Biavati B, Carlsson NG, Andlid T. The potential of bifidobacteria as a source of natural folate. J Appl Microbiol 2012;112:975-84.
75. Filannino P, Gobbetti M, De Angelis M, Di Cagno R. Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria. Appl Environ Microbiol 2014;80:7574-82.
76. Rossi M, Raimondi S, Costantino L, Amaretti A. Folate: relevance of chemical and microbial production. In: Vandamme EJ, Revuelta JL, editors. Industrial biotechnology of vitamins, biopigments, and antioxidants. Wiley; 2016. pp. 103-28.
77. Czarnowska-Kujawska M, Paszczyk B. Changes in the folate content and fatty acid profile in fermented milk produced with different starter cultures during storage. Molecules 2021;26:6063.
78. Malinowska AM, Schmidt M, Kok DE, Chmurzynska A. Ex vivo folate production by fecal bacteria does not predict human blood folate status: associations between dietary patterns, gut microbiota, and folate metabolism. Food Res Int 2022;156:111290.
79. Aufreiter S. Folate absorption across the colon and the modulation of bacterial folate synthesis by diet. Available from: https://tspace.library.utoronto.ca/bitstream/1807/32926/1/Aufreiter_Susanne_201006_PhD_thesis.pdf. [Last accessed on 4 Dec 2023]
80. Laiño JE, Juarez del Valle M, Savoy de Giori G, Leblanc JGJ. Development of a high folate concentration yogurt naturally bio-enriched using selected lactic acid bacteria. LWT Food Sci Technol 2013;54:1-5.
81. Laiño JE, Levit R, de Moreno de LeBlanc A, Savoy de Giori G, LeBlanc JG. Characterization of folate production and probiotic potential of Streptococcus gallolyticus subsp. macedonicus 2019;79:20-6.
82. Pompei A, Cordisco L, Amaretti A, Zanoni S, Matteuzzi D, Rossi M. Folate production by bifidobacteria as a potential probiotic property. Appl Environ Microbiol 2007;73:179-85.
83. Nordberg H, Cantor M, Dusheyko S, et al. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res 2014;42:D26-31.
84. Dehal PS, Joachimiak MP, Price MN, et al. MicrobesOnline: an integrated portal for comparative and functional genomics. Nucleic Acids Res 2010;38:D396-400.
85. Modesto M, Michelini S, Stefanini I, et al. Bifidobacterium lemurum sp. nov., from faeces of the ring-tailed lemur (Lemur catta). Int J Syst Evol Microbiol 2015;65:1726-34.
86. Modesto M, Michelini S, Oki K, Biavati B, Watanabe K, Mattarelli P. Bifidobacterium catulorum sp. nov., a novel taxon from the faeces of the baby common marmoset (Callithrix jacchus). Int J Syst Evol Microbiol 2018;68:575-81.
87. Duranti S, Lugli GA, Napoli S, et al. Characterization of the phylogenetic diversity of five novel species belonging to the genus Bifidobacterium: Bifidobacterium castoris sp. nov., Bifidobacterium callimiconis sp. nov., Bifidobacterium goeldii sp. nov., Bifidobacterium samirii sp. nov. and Bifidobacterium dolichotidis sp. nov. Int J Syst Evol Microbiol 2019;69:1288-98.
88. Milani C, Lugli GA, Duranti S, et al. Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl Environ Microbiol 2014;80:6290-302.
89. Sugahara H, Odamaki T, Hashikura N, Abe F, Xiao JZ. Differences in folate production by bifidobacteria of different origins. Biosci Microbiota Food Health 2015;34:87-93.
90. Ley RE, Hamady M, Lozupone C, et al. Evolution of mammals and their gut microbes. Science 2008;320:1647-51.
91. Pompei A, Cordisco L, Amaretti A, et al. Administration of folate-producing bifidobacteria enhances folate status in Wistar rats. J Nutr 2007;137:2742-46.
92. Strozzi GP, Mogna L. Quantification of folic acid in human feces after administration of Bifidobacterium probiotic strains. J Clin Gastroenterol 2008;42:179-84.
93. Mason JB, Dickstein A, Jacques PF, et al. A temporal association between folic acid fortification and an increase in colorectal cancer rates may be illuminating important biological principles: a hypothesis. Cancer Epidemiol Biomarkers Prev 2007;16:1325-9.
94. Hirsch S, Sanchez H, Albala C, et al. Colon cancer in Chile before and after the start of the flour fortification program with folic acid. Eur J Gastroenterol Hepatol 2009;21:436-9.
95. Albuquerque MAC, Yamacita DS, Bedani R, LeBlanc JG, Saad SMI. Influence of passion fruit by-product and fructooligosaccharides on the viability of Streptococcus thermophilus TH-4 and Lactobacillus rhamnosus LGG in folate bio-enriched fermented soy products and their effect on probiotic survival and folate bio-accessibility under in vitro simulated gastrointestinal conditions. Int J Food Microbiol 2019;292:126-36.
96. Albuquerque MA, Bedani R, Vieira AD, LeBlanc JG, Saad SM. Supplementation with fruit and okara soybean by-products and amaranth flour increases the folate production by starter and probiotic cultures. Int J Food Microbiol 2016;236:26-32.
97. Greppi A, Saubade F, Botta C, Humblot C, Guyot JP, Cocolin L. Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food. Food Microbiol 2017;62:169-77.
98. Korhola M, Hakonen R, Juuti K, et al. Production of folate in oat bran fermentation by yeasts isolated from barley and diverse foods. J Appl Microbiol 2014;117:679-89.
99. Saubade F, Hemery YM, Guyot JP, Humblot C. Lactic acid fermentation as a tool for increasing the folate content of foods. Crit Rev Food Sci Nutr 2017;57:3894-910.
100. Turpin W, Humblot C, Guyot JP. Genetic screening of functional properties of lactic acid bacteria in a fermented pearl millet slurry and in the metagenome of fermented starchy foods. Appl Environ Microbiol 2011;77:8722-34.
101. Crittenden RG, Martinez NR, Playne MJ. Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria. Int J Food Microbiol 2003;80:217-22.
102. Lin MY, Young CM. Folate levels in cultures of lactic acid bacteria. Int Dairy J 2000;10:409-13. Available from: https://www.sciencedirect.com/science/article/abs/pii/S095869460000056X. [Last accessed on 6 Dec 2023]
103. Holasová M, Fiedlerová V, Roubal P, Pechačová M. biosynthesis of folates by lactic acid bacteria and propionibacteria in fermented milk. Czech J Food Sci 2004;22:175-81.
104. Capozzi V, Russo P, Dueñas MT, López P, Spano G. Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products. Appl Microbiol Biotechnol 2012;96:1383-94.
105. Hjortmo S, Patring J, Andlid T. Growth rate and medium composition strongly affect folate content in Saccharomyces cerevisiae. Int J Food Microbiol 2008;123:93-100.
106. Sauer M, Branduardi P, Valli M, Porro D. Production of L-ascorbic acid by metabolically engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii. Appl Environ Microbiol 2004;70:6086-91.
107. Rosa JCC, Colombo LT, Alvim MCT, Avonce N, Van Dijck P, Passos FML. Metabolic engineering of Kluyveromyces lactis for