REFERENCES
1. Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ. Clostridium difficile infection. Nat Rev Dis Primers 2016;2:16020.
2. Rea MC, O’Sullivan O, Shanahan F, et al. Clostridium difficile carriage in elderly subjects and associated changes in the intestinal microbiota. J Clin Microbiol 2012;50:867-75.
3. Hopkins MJ, Macfarlane GT. Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J Med Microbiol 2002;51:448-54.
4. Sehgal K, Khanna S. Gut microbiome and Clostridioides difficile infection: a closer look at the microscopic interface. Therap Adv Gastroenterol 2021;14:1756284821994736.
5. Terveer EM, Vendrik KEW, Ooijevaar RE, et al. Faecal microbiota transplantation for Clostridioides difficile infection: four years’ experience of the Netherlands Donor Feces Bank. United European Gastroenterol J 2020;8:1236-47.
6. Hvas CL, Dahl Jørgensen SM, Jørgensen SP, et al. Fecal microbiota transplantation is superior to fidaxomicin for treatment of recurrent Clostridium difficile infection. Gastroenterology 2019;156:1324-32.e3.
7. Quraishi MN, Shabir S, Manzoor SE, et al. The journey towards safely restarting faecal microbiota transplantation services in the UK during the COVID-19 era. Lancet Microbe 2021;2:e133-4.
8. Wei S, Bahl MI, Baunwall SMD, et al. Gut microbiota differs between treatment outcomes early after fecal microbiota transplantation against recurrent Clostridioides difficile infection. Gut Microbes 2022;14:2084306.
9. Baktash A, Terveer EM, Zwittink RD, et al. Mechanistic insights in the success of fecal microbiota transplants for the treatment of Clostridium difficile infections. Front Microbiol 2018;9:1242.
10. Khoruts A, Sadowsky MJ. Understanding the mechanisms of faecal microbiota transplantation. Nat Rev Gastroenterol Hepatol 2016;13:508-16.
11. Szajewska H, Kołodziej M. Systematic review with meta-analysis: saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea. Aliment Pharmacol Ther 2015;42:793-801.
12. Zhang Y, Saint Fleur A, Feng H. The development of live biotherapeutics against Clostridioides difficile infection towards reconstituting gut microbiota. Gut Microbes 2022;14:2052698.
13. Crobach MJT, Vernon JJ, Loo VG, et al. Understanding Clostridium difficile colonization. Clin Microbiol Rev 2018;31:e00021-17.
14. Eyre DW, Griffiths D, Vaughan A, et al. Asymptomatic Clostridium difficile Colonisation and Onward Transmission. PLoS One 2013;8:e78445.
15. Kong LY, Eyre DW, Corbeil J, et al. Clostridium difficile: investigating transmission patterns between infected and colonized patients using whole genome sequencing. Clin Infect Dis 2019;68:204-9.
16. Zacharioudakis IM, Zervou FN, Pliakos EE, Ziakas PD, Mylonakis E. Colonization with toxinogenic C. difficile upon hospital admission, and risk of infection: a systematic review and meta-analysis. Am J Gastroenterol 2015;110:381-90.
17. Blixt T, Gradel KO, Homann C, et al. Asymptomatic carriers contribute to nosocomial clostridium difficile infection: a cohort study of 4508 patients. Gastroenterology 2017;152:1031-41.e2.
18. Rodríguez C, Romero E, Garrido-Sanchez L, et al. Microbiota insights in Clostridium difficile infection and inflammatory bowel disease. Gut Microbes 2020;12:1725220.
19. Crobach MJT, Hornung BVH, Verduin C, et al. Screening for Clostridioides difficile colonization at admission to the hospital: a multi-centre study. Clin Microbiol Infect 2023;29:891-6.
20. Zhang F, Aschenbrenner D, Yoo JY, Zuo T. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. Lancet Microbe 2022;3:e969-83.
21. Stewart Sr DB, Wright JR, Fowler M, et al. Integrated meta-omics reveals a fungus-associated bacteriome and distinct functional pathways in clostridioides difficile infection. mSphere 2019;4:e00454-19.
22. Cao Y, Wang L, Ke S, et al. Analysis of intestinal mycobiota of patients with clostridioides difficile infection among a prospective inpatient cohort. Microbiol Spectr 2022;10:e0136222.
23. Cao Y, Wang L, Ke S, et al. Fecal mycobiota combined with host immune factors distinguish Clostridioides difficile infection from asymptomatic carriage. Gastroenterology 2021;160:2328-39.e6.
24. Sangster W, Hegarty JP, Schieffer KM, et al. Bacterial and fungal microbiota changes distinguish C. difficile infection from other forms of diarrhea: results of a prospective inpatient study. Front Microbiol 2016;7:789.
25. Lamendella R, Wright JR, Hackman J, et al. Antibiotic treatments for Clostridium difficile infection are associated with distinct bacterial and fungal community structures. mSphere 2018;3:e00572-17.
26. Zuo T, Wong SH, Cheung CP, et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat Commun 2018;9:3663.
27. van Leeuwen PT, van der Peet JM, Bikker FJ, et al. Interspecies interactions between Clostridium difficile and Candida albicans. mSphere 2016;1:e00187-16.
28. Romo JA, Kumamoto CA. Characterization of the effects of Candida gastrointestinal colonization on Clostridioides difficile infection in a murine model. In: Calderone R, editor. Candida species: methods in molecular biology. New York: Humana; 2022. pp. 271-85.
29. Crobach MJT, Ducarmon QR, Terveer EM, et al. The bacterial gut microbiota of adult patients infected, colonized or noncolonized by Clostridioides difficile. Microorganisms 2020;8:677.
30. Fawley WN, Knetsch CW, MacCannell DR, et al. Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for clostridium difficile. PLoS One 2015;10:e0118150.
31. Rivers AR. Q2-ITSxpress: a tutorial on a QIIME 2 plugin to trim ITS sequences. Available from: https://forum.qiime2.org/t/q2-itsxpress-a-tutorial-on-a-qiime-2-plugin-to-trim-its-sequences/5780. [Last accessed on 5 Dec 2023].
32. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat biotechnol 2019;37:852-7.
33. Rivers AR, Weber KC, Gardner TG, Liu S, Armstrong SD. ITSxpress: software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Res 2018;7:1418.
34. Callahan BJ, McMurdie PJ, Rosen MJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 2016;13:581-3.
36. R Core Team. R: a language and environment for statistical computing. In: R Foundation for Statistical Computing; 2022. Available from: https://www.bibsonomy.org/bibtex/7469ffee3b07f9167cf47e7555041ee7. [Last accessed on 5 Dec 2023].
37. Bisanz J. qiime2R: Importing QIIME2 artifacts and associated data into R sessions. Available from: https://rdrr.io/github/jbisanz/qiime2R/. [Last accessed on 5 Dec 2023].
39. Ianiri G, Heitman J, Scheynius A. The skin commensal yeast Malassezia globosa thwarts bacterial biofilms to benefit the host. J Invest Dermatol 2018;138:1026-9.
40. Sousa-Silva M, Vieira D, Soares P, Casal M, Soares-Silva I. Expanding the knowledge on the skillful yeast Cyberlindnera jadinii. J Fungi 2021;7:36.
41. Lahti L, Shetty S. microbiome R package. Available from: https://doi.org/10.18129/B9.bioc.microbiome. [Last accessed on 5 Dec 2023].
42. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 2013;8:e61217.
43. Fernandes AD, Macklaim JM, Linn TG, Reid G, Gloor GB. ANOVA-Like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS One 2013;8:e67019.
44. Kassambara A. ggpubr: ‘ggplot2’ based publication ready plots. Available from: https://rpkgs.datanovia.com/ggpubr/. [Last accessed on 5 Dec 2023].
45. Wirbel J, Zych K, Essex M, et al. Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox. Genome Biol 2021;22:93.
46. Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol 2015;11:e1004226.
47. Pedersen TL. ggraph: an implementation of grammar of graphics for graphs and networks. Available from: https://rdrr.io/cran/ggraph/. [Last accessed on 5 Dec 2023].
48. Manian FA, Bryant A. Does Candida species overgrowth protect against Clostridium difficile infection? Clin Infect Dis 2013;56:464-5.
49. Nerandzic MM, Mullane K, Miller MA, Babakhani F, Donskey CJ. Reduced acquisition and overgrowth of vancomycin-resistant enterococci and Candida species in patients treated with fidaxomicin versus vancomycin for Clostridium difficile infection. Clin Infect Dis 2012;55 Suppl 2:S121-6.
50. Markey L, Shaban L, Green ER, et al. Pre-colonization with the commensal fungus Candida albicans reduces murine susceptibility to Clostridium difficile infection. Gut Microbes 2018;9:497-509.
51. Kumamoto CA. Inflammation and gastrointestinal Candida colonization. Curr Opin Microbiol 2011;14:386-91.
52. Blanco N, Walk S, Malani AN, et al. Clostridium difficile shows no trade-off between toxin and spore production within the human host. J Med Microbiol 2018;67:631-40.
53. Raponi G, Visconti V, Brunetti G, Ghezzi MC. Clostridium difficile Infection and Candida colonization of the gut: is there a correlation? Clin Infect Dis 2014;59:1648-9.
54. Gutierrez D, Weinstock A, Antharam VC, et al. Antibiotic-induced gut metabolome and microbiome alterations increase the susceptibility to Candida albicans colonization in the gastrointestinal tract. FEMS Microbiol Ecol 2020;96:fiz187.
55. Seelbinder B, Chen J, Brunke S, et al. Antibiotics create a shift from mutualism to competition in human gut communities with a longer-lasting impact on fungi than bacteria. Microbiome 2020;8:133.
56. Wombwell E. Saccharomyces boulardii prophylaxis for targeted antibiotics and infectious indications to reduce healthcare facility-onset Clostridioides difficile infection. Microbes Infect 2023;25:105041.
57. van Prehn J, Reigadas E, Vogelzang EH, et al. European Society of Clinical Microbiology and Infectious Diseases: 2021 update on the treatment guidance document for Clostridioides difficile infection in adults. Clin Microbiol Infect 2021;27 Suppl 2:S1-21.
58. Berkell M, Mysara M, Xavier BB, et al. Microbiota-based markers predictive of development of Clostridioides difficile infection. Nat Commun 2021;12:2241.
59. Lesniak NA, Schubert AM, Flynn KJ, et al. The gut bacterial community potentiates Clostridioides difficile infection severity. mBio 2022;13:e0118322.
60. Skraban J, Dzeroski S, Zenko B, Mongus D, Gangl S, Rupnik M. Gut microbiota patterns associated with colonization of different Clostridium difficile ribotypes. PLoS One 2013;8:e58005.
61. Jarocki P, Targoński Z. Genetic diversity of bile salt hydrolases among human intestinal bifidobacteria. Curr Microbiol 2013;67:286-92.
62. Song Z, Cai Y, Lao X, et al. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome 2019;7:9.
63. Mullish BH, McDonald JAK, Pechlivanis A, et al. Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection. Gut 2019;68:1791-800.
64. Brown JRM, Flemer B, Joyce SA, et al. Changes in microbiota composition, bile and fatty acid metabolism, in successful faecal microbiota transplantation for Clostridioides difficile infection. BMC Gastroenterol 2018;18:131.
65. Aguirre AM, Sorg JA. Gut associated metabolites and their roles in Clostridioides difficile pathogenesis. Gut Microbes 2022;14:2094672.
66. Takada T, Kurakawa T, Tsuji H, Nomoto K. Fusicatenibacter saccharivorans gen. nov., sp. nov., isolated from human faeces. Int J Syst Evol Micr 2013;63:3691-6.
67. Gibson CM, Childs-Kean LM, Naziruddin Z, Howell CK. The alteration of the gut microbiome by immunosuppressive agents used in solid organ transplantation. Transpl Infect Dis 2021;23:e13397.
68. Huang J, Liu W, Kang W, et al. Effects of microbiota on anticancer drugs: current knowledge and potential applications. eBioMedicine 2022;83:104197.
69. Nilsson RH, Anslan S, Bahram M, et al. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 2019;17:95-109.
70. Kazemian N, Ramezankhani M, Sehgal A, et al. The trans-kingdom battle between donor and recipient gut microbiome influences fecal microbiota transplantation outcome. Sci Rep 2020;10:18349.
71. Hernández Medina R, Kutuzova S, Nielsen KN, et al. Machine learning and deep learning applications in microbiome research. ISME Commun 2022;2:98.