REFERENCES
1. Zuo L, Iv Y, Wang Q, et al. Early-recurrent overt hepatic encephalopathy is associated with reduced survival in cirrhotic patients after transjugular intrahepatic portosystemic shunt creation. J Vasc Interv Radiol 2019;30:148-53.e2.
3. Fischer JE, Funovics FJ, Falcao HA, Wesdorp RI. L-dopa in hepatic coma. Ann Surg 1976;183:386-91.
4. Xu XY, Ding HG, Li WG, et al. Chinese guidelines on management of hepatic encephalopathy in cirrhosis. World J Gastroenterol 2019;25:5403-22.
5. Pabst O, Hornef MW, Schaap FG, Cerovic V, Clavel T, Bruns T. Gut-liver axis: barriers and functional circuits. Nat Rev Gastroenterol Hepatol 2023;20:447-61.
6. Kilgore A, Belkind-Gerson J. The bidirectional brain-gut-microbiome axis in pediatrics: what we know and what lies ahead. J Pediatr Gastroenterol Nutr 2023;77:147-9.
7. Smith ML, Wade JB, Wolstenholme J, Bajaj JS. Gut microbiome-brain-cirrhosis axis. Hepatology 2023;Online ahead of print.
8. Wang PYT, Caspi L, Lam CKL, et al. Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature 2008;452:1012-6.
9. Stadlbauer V, Wright GAK, Jalan R. Role of artificial liver support in hepatic encephalopathy. Metab Brain Dis 2009;24:15-26.
10. Pennisi E. Human genome 10th anniversary. Digging deep into the microbiome. Science 2011;331:1008-9.
11. Li F, Wang Q, Han Y, et al. Dietary pterostilbene inhibited colonic inflammation in dextran-sodium-sulfate-treated mice: a perspective of gut microbiota. Infect Microbes Dis 2021;3:22-9.
12. Zeevi D, Korem T, Godneva A, et al. Structural variation in the gut microbiome associates with host health. Nature 2019;568:43-8.
13. Yang Y, Bin P, Tao S, et al. Evaluation of the mechanisms underlying amino acid and microbiota interactions in intestinal infections using germ-free animals. Infect Microbes Dis 2021;3:79-86.
14. Moore MD, Suther C, Zhou Y. Microbiota, Viral infection, and the relationship to human diseases: an area of increasing interest in the SARS-CoV-2 pandemic. Infect Microbes Dis 2021;3:1-3.
16. Morais LH, Schreiber HL 4th, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol 2021;19:241-55.
17. Martin CR, Osadchiy V, Kalani A, Mayer EA. The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol 2018;6:133-48.
18. Laue HE, Coker MO, Madan JC. The developing microbiome from birth to 3 years: the gut-brain axis and neurodevelopmental outcomes. Front Pediatr 2022;10:815885.
19. Niemarkt HJ, De Meij TG, van Ganzewinkel CJ, et al. Necrotizing enterocolitis, gut microbiota, and brain development: role of the brain-gut axis. Neonatology 2019;115:423-31.
20. Bauer KC, Huus KE, Finlay BB. Microbes and the mind: emerging hallmarks of the gut microbiota-brain axis. Cell Microbiol 2016;18:632-44.
21. Heinzel S, Aho VTE, Suenkel U, et al. Gut microbiome signatures of risk and prodromal markers of Parkinson disease. Ann Neurol 2021;90:E1-12.
22. Tan AH, Lim SY, Lang AE. The microbiome-gut-brain axis in Parkinson disease - from basic research to the clinic. Nat Rev Neurol 2022;18:476-95.
23. Quigley EMM. The gut-brain axis and the microbiome: clues to pathophysiology and opportunities for novel management strategies in irritable bowel syndrome (IBS). J Clin Med 2018;7:6.
24. Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The central nervous system and the gut microbiome. Cell 2016;167:915-32.
25. Das De T, Sharma P, Tevatiya S, et al. Bidirectional microbiome-gut-brain-axis communication influences metabolic switch-associated responses in the mosquito anopheles culicifacies. Cells 2022;11:1798.
26. Ren Z, Li A, Jiang J, et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut 2019;68:1014-23.
27. Rager SL, Zeng MY. The gut-liver axis in pediatric liver health and disease. Microorganisms 2023;11:597.
28. Qin N, Yang F, Li A, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014;513:59-64.
29. Forsythe P, Bienenstock J, Kunze WA. Vagal pathways for microbiome-brain-gut axis communication. Adv Exp Med Biol 2014;817:115-33.
30. Teratani T, Mikami Y, Nakamoto N, et al. The liver-brain-gut neural arc maintains the Treg cell niche in the gut. Nature 2020;585:591-6.
31. Dollé JP, Rodgers JM, Browne KD, Troxler T, Gai F, Smith DH. Newfound effect of N-acetylaspartate in preventing and reversing aggregation of amyloid-beta in vitro. Neurobiol Dis 2018;117:161-9.
32. Warepam M, Mishra AK, Sharma GS, et al. Brain metabolite, N-acetylaspartate is a potent protein aggregation inhibitor. Front Cell Neurosci 2021;15:617308.
33. Veiga-da-Cunha M, Tyteca D, Stroobant V, Courtoy PJ, Opperdoes FR, Van Schaftingen E. Molecular identification of NAT8 as the enzyme that acetylates cysteine S-conjugates to mercapturic acids. J Biol Chem 2010;285:18888-98.
35. Ruggiero DA, Mtui EP, Otake K, Anwar M. Central and primary visceral afferents to nucleus tractus solitarii may generate nitric oxide as a membrane-permeant neuronal messenger. J Comp Neurol 1996;364:51-67.
36. Mohammadi MS, Thabut D, Cazals-Hatem D, et al. Possible mechanisms involved in the discrepancy of hepatic and aortic endothelial nitric oxide synthases during the development of cirrhosis in rats. Liver Int 2009;29:692-700.
37. Nandeesha H, Rajappa M, Manjusha J, Ananthanarayanan PH, Kadhiravan T, Harichandrakumar KT. Pentraxin-3 and nitric oxide as indicators of disease severity in alcoholic cirrhosis. Br J Biomed Sci 2015;72:156-9.
38. Tse JKY. Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders. ACS Chem Neurosci 2017;8:1438-47.
39. Williams R. Review article: bacterial flora and pathogenesis in hepatic encephalopathy. Aliment Pharmacol Ther 2007;25:17-22.
41. Rai R, Saraswat VA, Dhiman RK. Gut microbiota: its role in hepatic encephalopathy. J Clin Exp Hepatol 2015;5:S29-36.
42. Tilg H, Adolph TE, Trauner M. Gut-liver axis: pathophysiological concepts and clinical implications. Cell Metab 2022;34:1700-18.
43. Parekh PJ, Balart LA. Ammonia and its role in the pathogenesis of hepatic encephalopathy. Clin Liver Dis 2015;19:529-37.
44. Busnelli M, Manzini S, Chiesa G. The gut microbiota affects host pathophysiology as an endocrine organ: a focus on cardiovascular disease. Nutrients 2019;12:79.
45. Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol 2014;28:1221-38.
46. Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun 2018;9:3294.
47. Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 2018;23:716-24.
48. Kidron H, Repo S, Johnson MS, Salminen TA. Functional classification of amino acid decarboxylases from the alanine racemase structural family by phylogenetic studies. Mol Biol Evol 2007;24:79-89.
49. Tillisch K, Labus JS. Neuroimaging the microbiome-gut-brain axis. Adv Exp Med Biol 2014;817:405-16.
50. Prinsloo S, Lyle RR. The microbiome, gut-brain-axis, and implications for brain health. NeuroRegulation 2015;2:158-61.
51. Aldridge DR, Tranah EJ, Shawcross DL. Pathogenesis of hepatic encephalopathy: role of ammonia and systemic inflammation. J Clin Exp Hepatol 2015;5:S7-20.
52. Jalan R, Shawcross D, Davies N. The molecular pathogenesis of hepatic encephalopathy. Int J Biochem Cell Biol 2003;35:1175-81.
53. Baltazar-Díaz TA, González-Hernández LA, Aldana-Ledesma JM, et al. Escherichia/Shigella, SCFAs, and metabolic pathways - the triad that orchestrates intestinal dysbiosis in patients with decompensated alcoholic cirrhosis from Western Mexico. Microorganisms 2022;10:1231.
54. Bloom PP, Luévano JM Jr, Miller KJ, Chung RT. Deep stool microbiome analysis in cirrhosis reveals an association between short-chain fatty acids and hepatic encephalopathy. Ann Hepatol 2021;25:100333.
55. Bellono NW, Bayrer JR, Leitch DB, et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 2017;170:185-98.e16.
56. Engevik MA, Luck B, Visuthranukul C, et al. Human-derived Bifidobacterium dentium modulates the mammalian serotonergic system and gut-brain axis. Cell Mol Gastroenterol Hepatol 2021;11:221-48.
57. Marizzoni M, Cattaneo A, Mirabelli P, et al. Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer’s disease. J Alzheimers Dis 2020;78:683-97.
58. Pedersen SS, Prause M, Sørensen C, et al. Targeted delivery of butyrate improves glucose homeostasis, reduces hepatic lipid accumulation and inflammation in db/db mice. Int J Mol Sci 2023;24:4533.
59. Liu T, Li J, Liu Y, et al. Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-κB pathway in RAW264.7 cells. Inflammation 2012;35:1676-84.
60. Li T, Chiang JYL. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev 2014;66:948-83.
61. Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 2003;72:137-74.
62. Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. Molecular physiology of bile acid signaling in health, disease, and aging. Physiol Rev 2021;101:683-731.
63. Münzker J, Haase N, Till A, et al. Functional changes of the gastric bypass microbiota reactivate thermogenic adipose tissue and systemic glucose control via intestinal FXR-TGR5 crosstalk in diet-induced obesity. Microbiome 2022;10:96.
64. Thibaut MM, Bindels LB. Crosstalk between bile acid-activated receptors and microbiome in entero-hepatic inflammation. Trends Mol Med 2022;28:223-36.
65. Hu MM, He WR, Gao P, et al. Virus-induced accumulation of intracellular bile acids activates the TGR5-β-arrestin-SRC axis to enable innate antiviral immunity. Cell Res 2019;29:193-205.
66. Studer E, Zhou X, Zhao R, et al. Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 2012;55:267-76.
67. Fukuzaki Y, Faustino J, Lecuyer M, Rayasam A, Vexler ZS. Global sphingosine-1-phosphate receptor 2 deficiency attenuates neuroinflammation and ischemic-reperfusion injury after neonatal stroke. iScience 2023;26:106340.
68. Xie G, Wang X, Jiang R, et al. Dysregulated bile acid signaling contributes to the neurological impairment in murine models of acute and chronic liver failure. EBioMedicine 2018;37:294-306.
69. Xie G, Jiang R, Wang X, et al. Conjugated secondary 12α-hydroxylated bile acids promote liver fibrogenesis. EBioMedicine 2021;66:103290.
70. Williams E, Chu C, DeMorrow S. A critical review of bile acids and their receptors in hepatic encephalopathy. Anal Biochem 2022;643:114436.
71. Jia W, Rajani C, Kaddurah-Daouk R, Li H. Expert insights: The potential role of the gut microbiome-bile acid-brain axis in the development and progression of Alzheimer’s disease and hepatic encephalopathy. Med Res Rev 2020;40:1496-507.
72. Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord 2019;20:461-72.
73. Mendrek A. Sex steroid hormones and brain function associated with cognitive and emotional processing in schizophrenia. Expert Rev Endocrinol Metab 2013;8:1-3.
74. Gazzotti P, Bock H, Fleischer S. Role of lecithin in D-beta-hydroxybutyrate dehydrogenase function. Biochem Biophys Res Commun 1974;58:309-15.
75. Smith DGM, Williams SJ. Immune sensing of microbial glycolipids and related conjugates by T cells and the pattern recognition receptors MCL and Mincle. Carbohydr Res 2016;420:32-45.
76. Yin Y, Sichler A, Ecker J, et al. Gut microbiota promote liver regeneration through hepatic membrane phospholipid biosynthesis. J Hepatol 2023;78:820-35.
77. Burchill L, Williams SJ. From the banal to the bizarre: unravelling immune recognition and response to microbial lipids. Chem Commun 2022;58:925-40.
78. He X, Huang Y, Liu Y, et al. BAY61-3606 attenuates neuroinflammation and neurofunctional damage by inhibiting microglial Mincle/Syk signaling response after traumatic brain injury. Int J Mol Med 2022;49:5.
79. Greco SH, Torres-Hernandez A, Kalabin A, et al. Mincle signaling promotes Con A hepatitis. J Immunol 2016;197:2816-27.
80. Park BS, Lee JO. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med 2013;45:e66.
81. Lucki NC, Sewer MB. The interplay between bioactive sphingolipids and steroid hormones. Steroids 2010;75:390-9.
82. Kumari A, Pal Pathak D, Asthana S. Bile acids mediated potential functional interaction between FXR and FATP5 in the regulation of Lipid Metabolism. Int J Biol Sci 2020;16:2308-22.
83. Zambusi A, Novoselc KT, Hutten S, et al. TDP-43 condensates and lipid droplets regulate the reactivity of microglia and regeneration after traumatic brain injury. Nat Neurosci 2022;25:1608-25.
84. Gluchowski NL, Becuwe M, Walther TC, Farese RV Jr. Lipid droplets and liver disease: from basic biology to clinical implications. Nat Rev Gastroenterol Hepatol 2017;14:343-55.
85. Mao K, Baptista AP, Tamoutounour S, et al. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature 2018;554:255-9.
87. Sari DCR, Soetoko AS, Soetoko AS, et al. Uric acid induces liver fibrosis through activation of inflammatory mediators and proliferating hepatic stellate cell in mice. Med J Malaysia 2020;75:14-8.
88. Latourte A, Dumurgier J, Paquet C, Richette P. Hyperuricemia, gout, and the brain - an update. Curr Rheumatol Rep 2021;23:82.
90. Wei X, Zhang M, Huang S, et al. Hyperuricemia: a key contributor to endothelial dysfunction in cardiovascular diseases. FASEB J 2023;37:e23012.
91. Méndez-Salazar EO, Martínez-Nava GA. Uric acid extrarenal excretion: the gut microbiome as an evident yet understated factor in gout development. Rheumatol Int 2022;42:403-12.
92. Zhang L, Liu J, Jin T, Qin N, Ren X, Xia X. Live and pasteurized Akkermansia muciniphila attenuate hyperuricemia in mice through modulating uric acid metabolism, inflammation, and gut microbiota. Food Funct 2022;13:12412-25.
93. Duan Z, Fu J, Zhang F, et al. The association between BMI and serum uric acid is partially mediated by gut microbiota. Microbiol Spectr 2023;11:e0114023.
94. Xu P, Han X, Shen S, Li M. The relationship between serum uric acid level and liver function in patients with hepatitis B in China. Clin Lab 2021:1190.
95. Tang X, Song ZH, Cardoso MA, Zhou JB, Simó R. The relationship between uric acid and brain health from observational studies. Metab Brain Dis 2022;37:1989-2003.
96. Huang TT, Hao DL, Wu BN, Mao LL, Zhang J. Uric acid demonstrates neuroprotective effect on Parkinson’s disease mice through Nrf2-ARE signaling pathway. Biochem Biophys Res Commun 2017;493:1443-9.
97. Zoccali C, Maio R, Mallamaci F, Sesti G, Perticone F. Uric acid and endothelial dysfunction in essential hypertension. J Am Soc Nephrol 2006;17:1466-71.
98. Xiao J, Zhang XL, Fu C, et al. Soluble uric acid increases NALP3 inflammasome and interleukin-1β expression in human primary renal proximal tubule epithelial cells through the Toll-like receptor 4-mediated pathway. Int J Mol Med 2015;35:1347-54.
99. Watanabe T, Ishikawa M, Abe K, et al. Increased lung uric acid deteriorates pulmonary arterial hypertension. J Am Heart Assoc 2021;10:e022712.
100. Bajaj JS, Ridlon JM, Hylemon PB, et al. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol 2012;302:G168-75.
101. Pan Q, Li YQ, Guo K, et al. Elderly patients with mild cognitive impairment exhibit altered gut microbiota profiles. J Immunol Res 2021;2021:5578958.
102. Bajaj JS, Hylemon PB, Ridlon JM, et al. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am J Physiol Gastrointest Liver Physiol 2012;303:G675-85.
103. Bajaj JS, Fagan A, White MB, et al. Specific gut and salivary microbiota patterns are linked with different cognitive testing strategies in minimal hepatic encephalopathy. Am J Gastroenterol 2019;114:1080-90.
104. Bajaj JS, Gillevet PM, Patel NR, et al. A longitudinal systems biology analysis of lactulose withdrawal in hepatic encephalopathy. Metab Brain Dis 2012;27:205-15.
105. Cooper AJL, Kuhara T. α-Ketoglutaramate: an overlooked metabolite of glutamine and a biomarker for hepatic encephalopathy and inborn errors of the urea cycle. Metab Brain Dis 2014;29:991-1006.
106. Chen F, Li J, Zhang W, et al. [Retracted] Risk factor analysis of hepatic encephalopathy and the establishment of diagnostic model. Biomed Res Int 2022;2022:3475325.
107. Qi R, Zhang LJ, Luo S, et al. Default mode network functional connectivity: a promising biomarker for diagnosing minimal hepatic encephalopathy: CONSORT-compliant article. Medicine 2014;93:e227.
108. Claeys W, Van Hoecke L, Lernout H, et al. Experimental hepatic encephalopathy causes early but sustained glial transcriptional changes. J Neuroinflammation 2023;20:130.
109. Mincheva G, Gimenez-Garzo C, Izquierdo-Altarejos P, et al. Golexanolone, a GABAA receptor modulating steroid antagonist, restores motor coordination and cognitive function in hyperammonemic rats by dual effects on peripheral inflammation and neuroinflammation. CNS Neurosci Ther 2022;28:1861-74.
110. Moran S, López-Sánchez M, Milke-García MDP, Rodríguez-Leal G. Current approach to treatment of minimal hepatic encephalopathy in patients with liver cirrhosis. World J Gastroenterol 2021;27:3050-63.
111. Morgan TR, Moritz TE, Mendenhall CL, Haas R. Protein consumption and hepatic encephalopathy in alcoholic hepatitis. VA Cooperative Study Group #275. J Am Coll Nutr 1995;14:152-8.
112. Rudler M, Weiss N, Bouzbib C, Thabut D. Diagnosis and management of hepatic encephalopathy. Clin Liver Dis 2021;25:393-417.
113. Hudson M, Schuchmann M. Long-term management of hepatic encephalopathy with lactulose and/or rifaximin: a review of the evidence. Eur J Gastroenterol Hepatol 2019;31:434-50.
114. Mullish BH, McDonald JAK, Thursz MR, Marchesi JR. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology 2017;66:1354-5.
115. Bajaj JS, Salzman NH, Acharya C, et al. Fecal microbial transplant capsules are safe in hepatic encephalopathy: a phase 1, randomized, placebo-controlled trial. Hepatology 2019;70:1690-703.
116. Kaji K, Takaya H, Saikawa S, et al. Rifaximin ameliorates hepatic encephalopathy and endotoxemia without affecting the gut microbiome diversity. World J Gastroenterol 2017;23:8355-66.
117. Holecek M. Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy-therapeutic perspectives. Metab Brain Dis 2014;29:9-17.
118. Mahpour NY, Pioppo-Phelan L, Reja M, Tawadros A, Rustgi VK. Pharmacologic management of hepatic encephalopathy. Clin Liver Dis 2020;24:231-42.
119. Hu SH, Feng YY, Yang YX, et al. Amino acids downregulate SIRT4 to detoxify ammonia through the urea cycle. Nat Metab 2023;5:626-41.
120. Kawaguchi T, Taniguchi E, Sata M. Effects of oral branched-chain amino acids on hepatic encephalopathy and outcome in patients with liver cirrhosis. Nutr Clin Pract 2013;28:580-8.
121. Jiang Q, Jiang G, Welty TE, Zheng M. Naloxone in the management of hepatic encephalopathy. J Clin Pharm Ther 2010;35:333-41.
122. Wu G, Wu D, Lo J, et al. A bioartificial liver support system integrated with a DLM/GelMA-based bioengineered whole liver for prevention of hepatic encephalopathy via enhanced ammonia reduction. Biomater Sci 2020;8:2814-24.
123. Badal BD, Bajaj JS. Hepatic encephalopathy: diagnostic tools and management strategies. Med Clin North Am 2023;107:517-31.
124. Bloom PP, Tapper EB, Young VB, Lok AS. Microbiome therapeutics for hepatic encephalopathy. J Hepatol 2021;75:1452-64.