REFERENCES
1. Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis. Physiol Rev 2019;99:1877-2013.
2. Sukmajaya AC, Lusida MI, Soetjipto, Setiawati Y. Systematic review of gut microbiota and attention-deficit hyperactivity disorder (ADHD). Ann Gen Psychiatry 2021;20:12.
3. Bundgaard-Nielsen C, Knudsen J, Leutscher PDC, et al. Gut microbiota profiles of autism spectrum disorder and attention deficit/hyperactivity disorder: a systematic literature review. Gut Microbes 2020;11:1172-87.
4. Cheung SG, Goldenthal AR, Uhlemann AC, Mann JJ, Miller JM, Sublette ME. Systematic review of gut microbiota and major depression. Front Psychiatry 2019;10:34.
5. Jiang HY, Zhang X, Yu ZH, et al. Altered gut microbiota profile in patients with generalized anxiety disorder. J Psychiatr Res 2018;104:130-6.
6. Carlson AL, Xia K, Azcarate-Peril MA, et al. Infant gut microbiome associated with cognitive development. Biol Psychiatry 2018;83:148-59.
7. Sordillo JE, Korrick S, Laranjo N, et al. Association of the infant gut microbiome with early childhood neurodevelopmental outcomes: an ancillary study to the VDAART randomized clinical trial. JAMA Netw Open 2019;2:e190905.
8. Tamana SK, Tun HM, Konya T, et al. Bacteroides-dominant gut microbiome of late infancy is associated with enhanced neurodevelopment. Gut Microbes 2021;13:1-17.
9. Loughman A, Ponsonby AL, O’Hely M, et al. Gut microbiota composition during infancy and subsequent behavioural outcomes. EBioMedicine 2020;52:102640.
10. Ou Y, Belzer C, Smidt H, de Weerth C. Development of the gut microbiota in healthy children in the first ten years of life: associations with internalizing and externalizing behavior. Gut Microbes 2022;14:2038853.
11. Morais LH, Schreiber HL 4th, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol 2021;19:241-55.
12. Margolis KG, Cryan JF, Mayer EA. The microbiota-gut-brain axis: from motility to mood. Gastroenterology 2021;160:1486-501.
13. Mirzayi C, Renson A, Genomic Standards Consortium, et al. Reporting guidelines for human microbiome research: the STORMS checklist. Nat Med 2021;27:1885-92.
15. Vujkovic-Cvijin I, Sklar J, Jiang L, Natarajan L, Knight R, Belkaid Y. Host variables confound gut microbiota studies of human disease. Nature 2020;587:448-54.
16. Kraaij R, Schuurmans IK, Radjabzadeh D, et al. The gut microbiome and child mental health: a population-based study. Brain Behav Immun 2023;108:188-96.
17. Valles-Colomer M, Falony G, Darzi Y, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 2019;4:623-32.
18. Minichino A, Jackson MA, Francesconi M, et al. Endocannabinoid system mediates the association between gut-microbial diversity and anhedonia/amotivation in a general population cohort. Mol Psychiatry 2021;26:6269-76.
19. Bosch JA, Nieuwdorp M, Zwinderman AH, et al. The gut microbiota and depressive symptoms across ethnic groups. Nat Commun 2022;13:7129.
20. Gao W, Salzwedel AP, Carlson AL, et al. Gut microbiome and brain functional connectivity in infants-a preliminary study focusing on the amygdala. Psychopharmacology 2019;236:1641-51.
21. Rothenberg SE, Chen Q, Shen J, et al. Neurodevelopment correlates with gut microbiota in a cross-sectional analysis of children at 3 years of age in rural China. Sci Rep 2021;11:7384.
22. Laue HE, Karagas MR, Coker MO, et al. Sex-specific relationships of the infant microbiome and early-childhood behavioral outcomes. Pediatr Res 2022;92:580-91.
23. Guzzardi MA, Ederveen THA, Rizzo F, et al. Maternal pre-pregnancy overweight and neonatal gut bacterial colonization are associated with cognitive development and gut microbiota composition in pre-school-age offspring. Brain Behav Immun 2022;100:311-20.
24. van de Wouw M, Wang Y, Workentine ML, et al. Associations between the gut microbiota and internalizing behaviors in preschool children. Psychosom Med 2022;84:159-69.
25. Textor J, Hardt J, Knüppel S. DAGitty: a graphical tool for analyzing causal diagrams. Epidemiology 2011;22:745.
27. Eckermann HA, Ou Y, Lahti L, de Weerth C. Can gut microbiota throughout the first 10 years of life predict executive functioning in childhood? Dev Psychobiol 2022;64:e22226.
28. Amrhein V, Greenland S, McShane B. Scientists rise up against statistical significance. Nature 2019;567:305-7.
29. Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg 2018;126:1763-8.
30. Kong M, Zhang H, Cao X, Mao X, Lu Z. Higher level of neutrophil-to-lymphocyte is associated with severe COVID-19. Epidemiol Infect 2020;148:e139.
31. Verkouter I, Noordam R, de Roos A, et al. Adult weight change in relation to visceral fat and liver fat at middle age: The Netherlands epidemiology of obesity study. Int J Obes 2019;43:790-9.
32. Vissing NH, Chawes BL, Rasmussen MA, Bisgaard H. Epidemiology and risk factors of infection in early childhood. Pediatrics 2018;141:e20170933.
33. Xia Y, Sun J, Chen DG. Statistical analysis of microbiome data with R. In: ICSA Book Series in Statistics. Springer Singapore; 2018. Available from: https://link.springer.com/book/10.1007/978-981-13-1534-3. [Last accessed on 14 Oct 2023].
34. Michels N, Van de Wiele T, Fouhy F, O’Mahony S, Clarke G, Keane J. Gut microbiome patterns depending on children’s psychosocial stress: reports versus biomarkers. Brain Behav Immun 2019;80:751-62.
35. Liu B, Lin W, Chen S, et al. Gut microbiota as an objective measurement for auxiliary diagnosis of insomnia disorder. Front Microbiol 2019;10:1770.
36. Hu S, Li A, Huang T, et al. Gut microbiota changes in patients with bipolar depression. Adv Sci 2019;6:1900752.
37. Chen JJ, Zheng P, Liu YY, et al. Sex differences in gut microbiota in patients with major depressive disorder. Neuropsychiatr Dis Treat 2018;14:647-55.
38. Li Z, Lai J, Zhang P, et al. Multi-omics analyses of serum metabolome, gut microbiome and brain function reveal dysregulated microbiota-gut-brain axis in bipolar depression. Mol Psychiatry 2022;27:4123-35.
39. Lai WT, Deng WF, Xu SX, et al. Shotgun metagenomics reveals both taxonomic and tryptophan pathway differences of gut microbiota in major depressive disorder patients. Psychol Med 2021;51:90-101.
40. Yıldırım S, Nalbantoğlu ÖU, Bayraktar A, et al. Stratification of the gut microbiota composition landscape across the Alzheimer’s disease continuum in a turkish cohort. mSystems 2022;7:e0000422.
41. Acuña I, Cerdó T, Ruiz A, et al. Infant gut microbiota associated with fine motor skills. Nutrients 2021;13:1673.
42. Zhong H, Penders J, Shi Z, et al. Impact of early events and lifestyle on the gut microbiota and metabolic phenotypes in young school-age children. Microbiome 2019;7:2.
43. Pietrucci D, Cerroni R, Unida V, et al. Dysbiosis of gut microbiota in a selected population of Parkinson’s patients. Parkinsonism Relat Disord 2019;65:124-30.
44. Dong TS, Guan M, Mayer EA, et al. Obesity is associated with a distinct brain-gut microbiome signature that connects Prevotella and Bacteroides to the brain’s reward center. Gut Microbes 2022;14:2051999.
45. Fife DA, D’Onofrio J. Common, uncommon, and novel applications of random forest in psychological research. Behav Res Methods 2023;55:2447-66.
46. Cutler A, Cutler DR, Stevens JR. Ensemble machine learning. New York, NY: Springer New York; 2012. Available from: https://link.springer.com/10.1007/978-1-4419-9326-7. [Last accessed on 14 Oct 2023].
47. Hermes GDA, Eckermann HA, de Vos WM, de Weerth C. Does entry to center-based childcare affect gut microbial colonization in young infants? Sci Rep 2020;10:10235.
48. Dunson DB. Commentary: practical advantages of Bayesian analysis of epidemiologic data. Am J Epidemiol 2001;153:1222-6.
49. Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation. Genome Biol 2011;12:R60.
50. Mallick H, Rahnavard A, McIver LJ, et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput Biol 2021;17:e1009442.
51. Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis 2015;26:27663.
52. Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2014;2:15.
53. Nearing JT, Douglas GM, Hayes MG, et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat Commun 2022;13:342.
54. Kodikara S, Ellul S, Lê Cao KA. Statistical challenges in longitudinal microbiome data analysis. Brief Bioinform 2022;23:bbac273.
55. Hejblum BP, Skinner J, Thiébaut R. Time-course gene set analysis for longitudinal gene expression data. PLoS Comput Biol 2015;11:e1004310.
56. Roswall J, Olsson LM, Kovatcheva-Datchary P, et al. Developmental trajectory of the healthy human gut microbiota during the first 5 years of life. Cell Host Microbe 2021;29:765-76.e3.
57. Sanada K, Nakajima S, Kurokawa S, et al. Gut microbiota and major depressive disorder: a systematic review and meta-analysis. J Affect Disord 2020;266:1-13.
58. Knight R, Vrbanac A, Taylor BC, et al. Best practices for analysing microbiomes. Nat Rev Microbiol 2018;16:410-22.
59. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol 2017;8:2224.
60. Barlow JT, Bogatyrev SR, Ismagilov RF. Publisher correction: a quantitative sequencing framework for absolute abundance measurements of mucosal and lumenal microbial communities. Nat Commun 2020;11:3438.
61. Jian C, Luukkonen P, Yki-Järvinen H, Salonen A, Korpela K. Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling. PLoS One 2020;15:e0227285.
62. Vandeputte D, Kathagen G, D’hoe K, et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 2017;551:507-11.
63. Louca S, Polz MF, Mazel F, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol 2018;2:936-43.
64. Wemheuer F, Taylor JA, Daniel R, et al. Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environ Microbiome 2020;15:11.
65. Douglas GM, Maffei VJ, Zaneveld JR, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 2020;38:685-8.
66. Douglas GM, Maffei VJ, Zaneveld J, et al. PICRUSt2: an improved and extensible approach for metagenome inference. bioRxiv 2019. Available from: https://www.biorxiv.org/content/10.1101/672295v1. [Last accessed on 14 Oct 2023].
67. Jun SR, Robeson MS, Hauser LJ, Schadt CW, Gorin AA. PanFP: pangenome-based functional profiles for microbial communities. BMC Res Notes 2015;8:479.
68. Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics data integration, interpretation, and its application. Bioinform Biol Insights 2020;14:1177932219899051.
69. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.
70. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139-40.
71. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015;43:e47.
72. Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 2016;11:2301-19.
73. Bruderer R, Bernhardt OM, Gandhi T, et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics 2015;14:1400-10.
74. Zhang J, Xin L, Shan B, et al. PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics 2012;11:M111.010587.
75. Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods 2020;17:41-4.
76. Schmid R, Heuckeroth S, Korf A, et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat Biotechnol 2023;41:447-9.
77. Pang Z, Chong J, Zhou G, et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res 2021;49:W388-96.
78. Shen X, Zhu ZJ. MetFlow: an interactive and integrated workflow for metabolomics data cleaning and differential metabolite discovery. Bioinformatics 2019;35:2870-2.
79. Manzoni C, Kia DA, Vandrovcova J, et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief Bioinform 2018;19:286-302.
80. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science 2005;308:1635-8.
81. Villa MM, Bloom RJ, Silverman JD, et al. High-throughput isolation and culture of human gut bacteria with droplet microfluidics. bioRxiv 2019.
82. Watterson WJ, Tanyeri M, Watson AR, et al. Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes. Elife 2020;9:e56998.
83. Clavel T, Horz HP, Segata N, Vehreschild M. Next steps after 15 stimulating years of human gut microbiome research. Microb Biotechnol 2022;15:164-75.
84. Richard ML, Sokol H. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2019;16:331-45.
85. Borrel G, Brugère JF, Gribaldo S, Schmitz RA, Moissl-Eichinger C. The host-associated archaeome. Nat Rev Microbiol 2020;18:622-36.
86. Neu U, Mainou BA. Virus interactions with bacteria: partners in the infectious dance. PLoS Pathog 2020;16:e1008234.
87. Nagpal J, Cryan JF. Microbiota-brain interactions: moving toward mechanisms in model organisms. Neuron 2021;109:3930-53.
88. Horvath TD, Haidacher SJ, Engevik MA, et al. Interrogation of the mammalian gut-brain axis using LC-MS/MS-based targeted metabolomics with in vitro bacterial and organoid cultures and in vivo gnotobiotic mouse models. Nat Protoc 2023;18:490-529.
89. Moysidou CM, Owens RM. Advances in modelling the human microbiome-gut-brain axis in vitro. Biochem Soc Trans 2021;49:187-201.
91. Binda S, Hill C, Johansen E, et al. Criteria to qualify microorganisms as “probiotic” in foods and dietary supplements. Front Microbiol 2020;11:1662.
92. Meyyappan AC, Forth E, Wallace CJK, Milev R. Effect of fecal microbiota transplant on symptoms of psychiatric disorders: a systematic review. BMC Psychiatry 2020;20:299.