REFERENCES
1. Walderich B, Ursinus-Wössner A, van Duin J, Höltje JV. Induction of the autolytic system of Escherichia coli by specific insertion of bacteriophage MS2 lysis protein into the bacterial cell envelope. J Bacteriol 1988;170:5027-33.
2. Witte A, Reisinger GR, Säckl W, Wanner G, Lubitz W. Characterization of Escherichia coli lysis using a family of chimeric E-L genes. FEMS Microbiol Lett 1998;164:159-67.
3. Berkhout B, de Smit MH, Spanjaard RA, Blom T, van Duin J. The amino terminal half of the MS2-coded lysis protein is dispensable for function: implications for our understanding of coding region overlaps. EMBO J 1985;4:3315-20.
4. Chamakura KR, Tran JS, Young R. MS2 lysis of escherichia coli depends on host chaperone DnaJ. J Bacteriol 2017;199:e00058-17.
5. Walderich B, Höltje JV. Specific localization of the lysis protein of bacteriophage MS2 in membrane adhesion sites of Escherichia coli. J Bacteriol 1989;171:3331-6.
6. Goessens WH, Driessen AJ, Wilschut J, van Duin J. A synthetic peptide corresponding to the C-terminal 25 residues of phage MS2 coded lysis protein dissipates the protonmotive force in Escherichia coli membrane vesicles by generating hydrophilic pores. EMBO J 1988;7:867-73.
7. Chamakura K, Young R. Phage single-gene lysis: Finding the weak spot in the bacterial cell wall. J Biol Chem 2019;294:3350-8.
8. Bernhardt TG, Wang IN, Struck DK, Young R. Breaking free: “protein antibiotics” and phage lysis. Res Microbiol 2002;153:493-501.
9. Chamakura KR, Young R. Single-gene lysis in the metagenomic era. Curr Opin Microbiol 2020;56:109-17.
10. Langemann T, Koller VJ, Muhammad A, Kudela P, Mayr UB, Lubitz W. The Bacterial Ghost platform system: production and applications. Bioeng Bugs 2010;1:326-36.
11. Fu X, Himes BA, Ke D, Rice WJ, Ning J, Zhang P. Controlled bacterial lysis for electron tomography of native cell membranes. Structure 2014;22:1875-82.
12. Bernhardt TG, Roof WD, Young R. Genetic evidence that the bacteriophage ϕ X174 lysis protein inhibits cell wall synthesis. Proc Natl Acad Sci U S A 2000;97:4297-302.
13. Bernhardt TG, Roof WD, Young R. The Escherichia coli FKBP-type PPIase SlyD is required for the stabilization of the E lysis protein of bacteriophage φX174. Mol Microbiol 2002;45:99-108.
14. Mendel S, Holbourn JM, Schouten JA, Bugg TDH. Interaction of the transmembrane domain of lysis protein E from bacteriophage
15. Tanaka S, Clemons WM Jr. Minimal requirements for inhibition of MraY by lysis protein E from bacteriophage ΦX174. Mol Microbiol 2012;85:975-85.
16. Rodolis MT, Mihalyi A, O’Reilly A, et al. Identification of a novel inhibition site in translocase MraY based upon the site of interaction with lysis protein E from bacteriophage ϕX174. Chembiochem 2014;15:1300-8.
17. Mezhyrova J, Martin J, Peetz O, et al. Membrane insertion mechanism and molecular assembly of the bacteriophage lysis toxin ΦX174-E. FEBS J 2021;288:3300-16.
18. Haberstock S, Roos C, Hoevels Y, et al. A systematic approach to increase the efficiency of membrane protein production in cell-free expression systems. Protein Expr Purif 2012;82:308-16.
19. Schwarz D, Junge F, Durst F, et al. Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Nat Protoc 2007;2:2945-57.
20. Baba T, Ara T, Hasegawa M, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006;2:2006.0008.
21. Roos C, Kai L, Haberstock S, et al. High-level cell-free production of membrane proteins with nanodiscs. In: Alexandrov K, Johnston WA, editors. Cell-Free Protein Synthesis. Totowa: Humana Press; 2014. p. 109-30.
22. Rues R, Henrich E, Boland C, Caffrey M, Bernhard F. Cell-free production of membrane proteins in escherichia coli lysates for functional and structural studies. In: Mus-veteau I, editor. Heterologous Expression of Membrane Proteins. New York: Springer; 2016. p. 1-21.
23. Denisov IG, Grinkova YV, Lazarides AA, Sligar SG. Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc 2004;126:3477-87.
24. Schägger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 1987;166:368-79.
25. Morgner N, Barth H, Brutschy B. A new way to detect noncovalently bonded complexes of biomolecules from liquid micro-droplets by laser mass spectrometry. Aust J Chem 2006;59:109.
26. Peetz O, Hellwig N, Henrich E, et al. LILBID and nESI: different native mass spectrometry techniques as tools in structural biology. J Am Soc Mass Spectrom 2019;30:181-91.
27. Morgner N, Robinson CV. Massign: an assignment strategy for maximizing information from the mass spectra of heterogeneous protein assemblies. Anal Chem 2012;84:2939-48.
28. Henrich E, Peetz O, Hein C, et al. Analyzing native membrane protein assembly in nanodiscs by combined non-covalent mass spectrometry and synthetic biology. Elife 2017;6:e20954.
29. Höltje V, van Duin J. MS2 phage induced lysis of E. coli depends upon the activity of the bacterial autolysins. In: Nombela C, editor. Microbial Cell Wall Synthesis and Autolysis. Elsevier Science; 1984. p. 195-199. Available from: https://books.google.de/books/about/Microbial_Cell_Wall_Synthesis_and_Autoly.html?id=c96EAAAAIAAJ&redir_esc=y. [Last accessed on 18 Jul 2023]
30. Maratea D, Young K, Young R. Deletion and fusion analysis of the phage φX174 lysis gene E. Gene 1985;40:39-46.
31. Buckley KJ, Hayashi M. Lytic activity localized to membrane-spanning region of ϕX174 E protein. Mol Gen Genet 1986;204:120-5.
32. Witte A, Schrot G, Schön P, Lubitz W. Proline 21, a residue within the α-helical domain of ΦX174 lysis protein E, is required for its function in Escherichia coli. Mol Microbiol 1997;26:337-46.
33. Schmidt BF, Berkhout B, Overbeek GP, van Strien A, van Duin J. Determination of the RNA secondary structure that regulates lysis gene expression in bacteriophage MS2. J Mol Biol 1987;195:505-16.
34. Licis N, van Duin J, Balklava Z, Berzins V. Long-range translational coupling in single-stranded RNA bacteriophages: an evolutionary analysis. Nucleic Acids Res 1998;26:3242-6.
35. Singh RK, Jaishankar J, Muthamilarasan M, Shweta S, Dangi A, Prasad M. Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress. Sci Rep 2016;6:32641.
36. Höltje JV, Fiedler W, Rotering H, Walderich B, van Duin J. Lysis induction of Escherichia coli by the cloned lysis protein of the phage MS2 depends on the presence of osmoregulatory membrane-derived oligosaccharides. J Biol Chem 1988;263:3539-41.
37. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005;3:238-50.
38. Fuertes G, Giménez D, Esteban-Martín S, Sánchez-Muñoz OL, Salgado J. A lipocentric view of peptide-induced pores. Eur Biophys J 2011;40:399-415.
39. Žerovnik E. Viroporins
40. Krishnan R S, Satheesan R, Puthumadathil N, Kumar KS, Jayasree P, Mahendran KR. Autonomously assembled synthetic transmembrane peptide pore. J Am Chem Soc 2019;141:2949-59.