REFERENCES

1. Comin M, Di Camillo B, Pizzi C, Vandin F. Comparison of microbiome samples: methods and computational challenges. Brief Bioinform 2021;22:88-95.

2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403-10.

3. Maillet N, Lemaitre C, Chikhi R, Lavenier D, Peterlongo P. Compareads: comparing huge metagenomic experiments. BMC Bioinformatics 2012;13:S10.

4. Maillet N, Collet G, Vannier T, Lavenier D, Peterlongo P. Commet: comparing and combining multiple metagenomic datasets. In: 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2014 Nov 2-5; Belfast, UK. IEEE; 2015. p. 94-8.

5. Dubinkina VB, Ischenko DS, Ulyantsev VI, Tyakht AV, Alexeev DG. Assessment of k-mer spectrum applicability for metagenomic dissimilarity analysis. BMC Bioinformatics 2016;17:38.

6. Wu YW, Ye Y. A novel abundance-based algorithm for binning metagenomic sequences using l-tuples. J Comput Biol 2011;18:523-34.

7. Fofanov Y, Luo Y, Katili C, et al. How independent are the appearances of n-mers in different genomes? Bioinformatics 2004;20:2421-8.

8. Ondov BD, Treangen TJ, Melsted P, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016;17:132.

9. Choi I, Ponsero AJ, Bomhoff M, Youens-Clark K, Hartman JH, Hurwitz BL. Libra: scalable k-mer-based tool for massive all-vs-all metagenome comparisons. Gigascience 2019;8:giy165.

10. Benoit G, Peterlongo P, Mariadassou M, et al. Multiple comparative metagenomics using multiset k-mer counting. PeerJ Comput Sci 2016;2:e94.

11. Gourlé H, Karlsson-Lindsjö O, Hayer J, Bongcam-Rudloff E. Simulating Illumina metagenomic data with InSilicoSeq. Bioinformatics 2019;35:521-2.

12. Yu Z, Du F, Ban R, Zhang Y. SimuSCoP: reliably simulate Illumina sequencing data based on position and context dependent profiles. BMC Bioinformatics 2020;21:331.

13. Li W, O'Neill KR, Haft DH, et al. RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res 2021;49:D1020-8.

14. Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci 2003;14:927-30.

15. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 2019;20:257.

16. Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in metagenomics data. PeerJ Comput Sci 2017;3:e104.

17. Benoit G, Mariadassou M, Robin S, Schbath S, Peterlongo P, Lemaitre C. SimkaMin: fast and resource frugal de novo comparative metagenomics. Bioinformatics 2020;36:1275-6.

18. Matharu D, Ponsero AJ, Dikareva E, et al. Bacteroides abundance drives birth mode dependent infant gut microbiota developmental trajectories. Front Microbiol 2022;13:953475.

19. Hiseni P, Rudi K, Wilson RC, Hegge FT, Snipen L. HumGut: a comprehensive human gut prokaryotic genomes collection filtered by metagenome data. Microbiome 2021;9:165.

20. Rowe WP, Carrieri AP, Alcon-Giner C, et al. Streaming histogram sketching for rapid microbiome analytics. Microbiome 2019;7:40.

21. Pierce NT, Irber L, Reiter T, Brooks P, Brown CT. Large-scale sequence comparisons with sourmash. F1000Res 2019;8:1006.

22. Murray KD, Webers C, Ong CS, Borevitz J, Warthmann N. kWIP: The k-mer weighted inner product, a de novo estimator of genetic similarity. PLoS Comput Biol 2017;13:e1005727.

23. Fimereli D, Detours V, Konopka T. TriageTools: tools for partitioning and prioritizing analysis of high-throughput sequencing data. Nucleic Acids Res 2013;41:e86.

24. Ulyantsev VI, Kazakov SV, Dubinkina VB, Tyakht AV, Alexeev DG. MetaFast: fast reference-free graph-based comparison of shotgun metagenomic data. Bioinformatics 2016;32:2760-7.

25. Zhang Q, Pell J, Canino-Koning R, Howe AC, Brown CT. These are not the k-mers you are looking for: efficient online k-mer counting using a probabilistic data structure. PLoS One 2014;9:e101271.

26. Lu YY, Tang K, Ren J, Fuhrman JA, Waterman MS, Sun F. CAFE: aCcelerated Alignment-FrEe sequence analysis. Nucleic Acids Res 2017;45:W554-9.

27. Thomas AM, Segata N. Multiple levels of the unknown in microbiome research. BMC Biol 2019;17:48.

28. Chu J, Mohamadi H, Erhan E, et al. Mismatch-tolerant, alignment-free sequence classification using multiple spaced seeds and multiindex Bloom filters. Proc Natl Acad Sci U S A 2020;117:16961-8.

29. Kazemi P, Wong J, Nikolić V, Mohamadi H, Warren RL, Birol I. ntHash2: recursive spaced seed hashing for nucleotide sequences. Bioinformatics 2022;38:4812-3.

30. Wang Y, Chen Q, Deng C, Zheng Y, Sun F. KmerGO: A tool to identify group-specific sequences with k-mers. Front Microbiol 2020;11:2067.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/