REFERENCES
1. de Zelicourt A, Al-Yousif M, Hirt H, et al. Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant 2013;6:242-5.
2. Toju H, Peay KG, Yamamichi M, et al. Core microbiomes for sustainable agroecosystems. Nat Plants 2018;4:247-57.
3. Naylor D, Sadler N, Bhattacharjee A, et al. Soil microbiomes under climate change and implications for carbon cycling. Annu Rev Environ Resour 2020;45:29-59.
4. Layeghifard M, Hwang DM, Guttman DS. Disentangling interactions in the microbiome: a network perspective. Trends Microbiol 2017;25:217-28.
5. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science 2012;336:1268-73.
6. Levy M, Thaiss CA, Elinav E. Metabolites: messengers between the microbiota and the immune system. Genes Dev 2016;30:1589-97.
7. Ehrlich SD, The MetaHIT Consortium. MetaHIT: the European Union Project on metagenomics of the human intestinal tract. In: Nelson K, editor. Metagenomics of the human body. New York: Springer; 2011. p. 307-16.
8. McDonald D, Hyde E, Debelius JW, et al. American gut: an open platform for citizen science microbiome research. mSystems 2018;3:e00031-18.
9. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature 2009;457:480-4.
10. Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 2016;534:213-7.
12. Morgan XC, Tickle TL, Sokol H, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 2012;13:R79.
13. Pascal V, Pozuelo M, Borruel N, et al. A microbial signature for Crohn's disease. Gut 2017;66:813-22.
15. Thompson LR, Sanders JG, McDonald D, et al. Earth microbiome project consortium. A communal catalogue reveals earth's multiscale microbial diversity. Nature 2017;551:457-63.
16. Cavicchioli R, Ripple WJ, Timmis KN, et al. Scientists' warning to humanity: microorganisms and climate change. Nat Rev Microbiol 2019;17:569-86.
17. Leblond-Bourget N, Philippe H, Mangin I, Decaris B. 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter-and intraspecific Bifidobacterium phylogeny. Int J Syst Bacteriol 1996;46:102-11.
18. Milani C, Duranti S, Mangifesta M, et al. Phylotype-level profiling of lactobacilli in highly complex environments by means of an internal transcribed spacer-based metagenomic approach. Appl Environ Microbiol 2018;84:e00706-18.
19. Dohlman AB, Shen X. Mapping the microbial interactome: statistical and experimental approaches for microbiome network inference. Exp Biol Med 2019;244:445-58.
20. Rogers GB, Hoffman LR, Carroll MP, Bruce KD. Interpreting infective microbiota: the importance of an ecological perspective. Trends Microbiol 2013;21:271-6.
21. da Silva D, Castañeda-Ojeda MP, Moretti C, Buonaurio R, Ramos C, Venturi V. Bacterial multispecies studies and microbiome analysis of a plant disease. Microbiology 2014;160:556-66.
22. Silk MJ, Croft DP, Delahay RJ, et al. The application of statistical network models in disease research. Methods Ecol Evol 2017;8:1026-41.
23. Liu Y, Liu A, Liu X, Huang X. A statistical approach to participant selection in location-based social networks for offline event marketing. Inform Sciences 2019;480:90-108.
24. Cranmer SJ, Leifeld P, Mcclurg SD, Rolfe M. Navigating the range of statistical tools for inferential network analysis. Am J Polit Sci 2017;61:237-51.
25. Fujita A, Vidal MC, Takahashi DY. A statistical method to distinguish functional brain networks. Front Neurosci 2017;11:66.
26. Dorogovtsev SN, Mendes JFF. Evolution of networks: from biological nets to the internet and WWW. Oxford University Press; 2003.
27. Kleaveland B, Shi CY, Stefano J, Bartel DP. A network of noncoding regulatory rnas acts in the mammalian brain. Cell 2018;174:350-62.e17.
29. Liu Z, Ma A, Mathé E, Merling M, Ma Q, Liu B. Network analyses in microbiome based on high-throughput multi-omics data. Brief Bioinform 2021;22:1639-55.
30. Olesen JM, Bascompte J, Dupont YL, Jordano P. The modularity of pollination networks. Proc Natl Acad Sci U S A 2007;104:19891-6.
31. Stouffer DB, Bascompte J. Compartmentalization increases food-web persistence. Proc Natl Acad Sci U S A 2011;108:3648-52.
32. de Vries FT, Griffiths RI, Bailey M, et al. Soil bacterial networks are less stable under drought than fungal networks. Nat Commun 2018;9:3033.
33. Herren CM, McMahon KD. Cohesion: a method for quantifying the connectivity of microbial communities. ISME J 2017;11:2426-38.
34. Hernandez DJ, David AS, Menges ES, Searcy CA, Afkhami ME. Environmental stress destabilizes microbial networks. ISME J 2021;15:1722-34.
35. Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: networks, competition, and stability. Science 2015;350:663-6.
36. Agler MT, Ruhe J, Kroll S, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 2016;14:e1002352.
38. Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol 2012;8:e1002687.
39. Fang H, Huang C, Zhao H, Deng M. CCLasso: correlation inference for compositional data through Lasso. Bioinformatics 2015;31:3172-80.
40. Fabbrini M, D'Amico F, Leardini D, et al. Levofloxacin prophylaxis and parenteral nutrition have a detrimental effect on intestinal microbial networks in pediatric patients undergoing HSCT. Commun Biol 2023;6:36.
41. Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Res 2016;5:1519.
42. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498-504.
43. Bean DM, Heimbach J, Ficorella L, Micklem G, Oliver SG, Favrin G. Correction: esyN: network building, sharing and publishing. PLoS One 2019;14:e0204058.
44. Biswas S, Mcdonald M, Lundberg DS, Dangl JL, Jojic V. Learning microbial interaction networks from metagenomic count data. J Comput Biol 2016;23:526-35.
45. Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Bio 2015;11:e1004226.
46. Yoon G, Gaynanova I, Müller CL. Microbial networks in SPRING-semi-parametric rank-based correlation and partial correlation estimation for quantitative microbiome data. Front Genet 2019;10:516.
47. Meinshausen N, Bühlmann P. High-dimensional graphs and variable selection with the Lasso. Ann Statist 2006;34:1436-62.
48. Jiang S, Xiao G, Koh AY, et al. HARMONIES: a hybrid approach for microbiome networks inference via exploiting sparsity. Front Genet 2020;11:445.
49. Tackmann J, Matias Rodrigues JF, von Mering C. Rapid inference of direct interactions in large-scale ecological networks from heterogeneous microbial sequencing data. Cell Syst 2019;9:286-96.e8.
50. McGregor K, Labbe A, Greenwood CMT. MDiNE: a model to estimate differential co-occurrence networks in microbiome studies. Bioinformatics 2020;36:1840-7.
51. Peschel S, Müller CL, von Mutius E, Boulesteix AL, Depner M. NetCoMi: network construction and comparison for microbiome data in R. Brief Bioinform 2020;7:195248.
52. Wang Q, Wang K, Wu W, Giannoulatou E, Ho JWK, Li L. Host and microbiome multi-omics integration: applications and methodologies. Biophys Rev 2019;11:55-65.
53. Wang C, Lue W, Kaalia R, Kumar P, Rajapakse JC. Network-based integration of multi-omics data for clinical outcome prediction in neuroblastoma. Sci Rep 2022;12:15425.
54. Singh A, Shannon CP, Gautier B, et al. DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics 2019;35:3055-62.
55. Rohart F, Gautier B, Singh A, Lê Cao KA. MixOmics: an r package for 'omics feature selection and multiple data integration. PLoS Comput Biol 2017;13:e1005752.
56. Zoppi J, Guillaume JF, Neunlist M, Chaffron S. MiBiOmics: an interactive web application for multi-omics data exploration and integration. BMC Bioinformatics 2021;22:6.
57. Goberna M, Verdú M. Cautionary notes on the use of co-occurrence networks in soil ecology. Soil Biol Biochem 2022;166:108534.
58. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7:335-6.
59. Blanco-Míguez A, Beghini F, Cumbo F, et al. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat Biotechnol 2023.
60. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 2019;20:257.
61. Milani C, Lugli GA, Fontana F, et al. METAnnotatorX2: a comprehensive tool for deep and shallow metagenomic data set analyses. mSystems 2021;6:e0058321.
62. Douglas GM, Maffei VJ, Zaneveld JR, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 2020;38:685-8.
63. Beghini F, McIver LJ, Blanco-Míguez A, et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife 2021;10:e65088.
64. Liu J, Wang H, Yang H, et al. Composition-based classification of short metagenomic sequences elucidates the landscapes of taxonomic and functional enrichment of microorganisms. Nucleic Acids Res 2013;41:e3.
65. Huerta-Cepas J, Szklarczyk D, Heller D, et al. EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019;47:D309-14.
66. Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 2018;6:158.
68. Muller J, Szklarczyk D, Julien P, et al. EggNOG v2.0: extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations. Nucleic Acids Res 2010;38:D190-5.
69. Cao Q, Sun X, Rajesh K, et al. Effects of rare microbiome taxa filtering on statistical analysis. Front Microbiol 2020;11:607325.
70. Wang M, Tu Q. Effective data filtering is prerequisite for robust microbial association network construction. Front Microbiol 2022;13:1016947.
71. Mokhtari EB, Ridenhour BJ. Filtering ASVs/OTUs via mutual information-based microbiome network analysis. BMC Bioinformatics 2022;23:380.
72. Thomas AM, Manghi P, Asnicar F, et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat Med 2019;25:667-678.
73. Wang K, Wu W, Wang Q, et al. The negative effect of Akkermansia muciniphila-mediated post-antibiotic reconstitution of the gut microbiota on the development of colitis-associated colorectal cancer in mice. Front Microbiol 2022;13:932047.
74. Tilg H, Adolph TE, Gerner RR, Moschen AR. The intestinal microbiota in colorectal cancer. Cancer Cell 2018;33:954-64.