REFERENCES

1. Hidalgo-Cantabrana C, Delgado S, Ruiz L, Ruas-Madiedo P, Sánchez B, Margolles A. Bifidobacteria and their health-promoting effects. Microbiol Spectr 2017.

2. Wong CB, Odamaki T, Xiao JZ. Insights into the reason of human-residential bifidobacteria (HRB) being the natural inhabitants of the human gut and their potential health-promoting benefits. FEMS Microbiol Rev 2020;44:369-85.

3. Chichlowski M, Shah N, Wampler JL, Wu SS, Vanderhoof JA. Bifidobacterium longum subspecies infantis (B. infantis) in pediatric nutrition: current state of knowledge. Nutrients 2020;12:1581.

4. Sakanaka M, Gotoh A, Yoshida K, et al. Varied pathways of infant gut-associated bifidobacterium to assimilate human milk oligosaccharides: prevalence of the gene set and its correlation with bifidobacteria-rich microbiota formation. Nutrients 2019;12:71.

5. Sakanaka M, Hansen ME, Gotoh A, et al. Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis. Sci Adv 2019;5:eaaw7696.

6. Katoh T, Yamada C, Wallace MD, et al. A bacterial sulfoglycosidase highlights mucin O-glycan breakdown in the gut ecosystem. Nat Chem Biol 2023;19:778-89.

7. Kan Z, Luo B, Cai J, Zhang Y, Tian F, Ni Y. Genotyping and plant-derived glycan utilization analysis of bifidobacterium strains from mother-infant pairs. BMC Microbiol 2020;20:277.

8. Kelly SM, Munoz-Munoz J, van Sinderen D. Plant glycan metabolism by bifidobacteria. Front Microbiol 2021;12:609418.

9. Wyatt GR. The biochemistry of sugars and polysaccharides in insects. Adv Insect Physiol 1967;4:287-360.

10. Milani C, Lugli GA, Duranti S, et al. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci Rep 2015;5:15782.

11. Martino ME, Joncour P, Leenay R, et al. Bacterial adaptation to the host’s diet is a key evolutionary force shaping drosophila-lactobacillus symbiosis. Cell Host Microbe 2018;24:109-19.e6.

12. Dapa T, Ramiro RS, Pedro MF, Gordo I, Xavier KB. Diet leaves a genetic signature in a keystone member of the gut microbiota. Cell Host Microbe 2022;30:183-99.e10.

13. Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 2010;464:908-12.

14. Monod J. The phenomenon of enzymatic adaptation and its. bearings on problems of genetics and cellular differentiation. Growth 1947;2:223-89. Available from: https://eurekamag.com/research/013/889/013889555.php. [Last accessed on 17 Aug 2023]

15. Pastan I, Perlman R. Cyclic adenosine monophosphate in bacteria. Science 1970;169:339-44.

16. Inada T, Kimata K, Aiba H. Mechanism responsible for glucose-lactose diauxie in Escherichia coli: challenge to the cAMP model. Genes Cells 1996;1:293-301.

17. Wuttge S, Licht A, Timachi MH, Bordignon E, Schneider E. Mode of interaction of the signal-transducing protein EIIA(Glc) with the maltose ABC transporter in the process of inducer exclusion. Biochemistry 2016;55:5442-52.

18. Nair A, Sarma SJ. The impact of carbon and nitrogen catabolite repression in microorganisms. Microbiol Res 2021;251:126831.

19. Park H, McGill SL, Arnold AD, Carlson RP. Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor. Cell Mol Life Sci 2020;77:395-413.

20. Parche S, Beleut M, Rezzonico E, et al. Lactose-over-glucose preference in bifidobacterium longum NCC2705: glcP, encoding a glucose transporter, is subject to lactose repression. J Bacteriol 2006;188:1260-5.

21. Kim TB, Song SH, Kang SC, Oh DK. Quantitative comparison of lactose and glucose utilization in bifidobacterium longum cultures. Biotechnol Prog 2003;19:672-5.

22. Murakami R, Hashikura N, Yoshida K, Xiao JZ, Odamaki T. Growth-promoting effect of alginate on faecalibacterium prausnitzii through cross-feeding with bacteroides. Food Res Int 2021;144:110326.

23. Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 2002;30:1575-84.

24. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673-80.

25. Asakuma S, Hatakeyama E, Urashima T, et al. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem 2011;286:34583-92.

26. Ojima MN, Jiang L, Arzamasov AA, et al. Priority effects shape the structure of infant-type bifidobacterium communities on human milk oligosaccharides. ISME J 2022;16:2265-79.

27. Lugli GA, Calvete-Torre I, Alessandri G, et al. Phylogenetic classification of ten novel species belonging to the genus Bifidobacterium comprising B. phasiani sp. nov., B. pongonis sp. nov., B. saguinibicoloris sp. nov., B. colobi sp. nov., B. simiiventris sp. nov., B. santillanense sp. nov., B. miconis sp. nov., B. amazonense sp. nov., B. pluvialisilvae sp. nov., and B. miconisargentati sp. nov. Syst Appl Microbiol 2021;44:126273.

28. Foucaud C, Poolman B. Lactose transport system of streptococcus thermophilus. Functional reconstitution of the protein and characterization of the kinetic mechanism of transport. J Biol Chem 1992;267:22087-94.

29. Wojcik KY, Rechtman DJ, Lee ML, Montoya A, Medo ET. Macronutrient analysis of a nationwide sample of donor breast milk. J Am Diet Assoc 2009;109:137-40.

30. Pace RM, Williams JE, Robertson B, et al. Variation in human milk composition is related to differences in milk and infant fecal microbial communities. Microorganisms 2021;9:1153.

31. Turton JA, Ford DJ, Bleby J, Hall BM, Whiting R. Composition of the milk of the common marmoset (Callithrix jacchus) and milk substitutes used in hand-rearing programmes, with special reference to fatty acids. Folia Primatol 1978;29:64-79.

32. Power ML, Oftedal OT, Tardif SD. Does the milk of Callitrichid monkeys differ from that of larger anthropoids? Am J Primatol 2002;56:117-27.

33. Osthoff G. Milk | Milks of non-dairy mammals. In: Encyclopedia of Dairy Sciences. Elsevier; 2011. p. 538-52. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780123744074003204. [Last accessed on 17 Aug 2023].

34. Power ML, Verona CE, Ruiz-Miranda C, Oftedal OT. The composition of milk from free-living common marmosets (Callithrix jacchus) in Brazil. Am J Primatol 2008;70:78-83.

35. Zhang S, Chen F, Zhang Y, et al. Recent progress of porcine milk components and mammary gland function. J Anim Sci Biotechnol 2018;9:77.

36. Park YW. Milk | Milks of other domesticated mammals (pigs, yaks, reindeer, etc.). In: Encyclopedia of Dairy Sciences. Elsevier; 2011. p. 530-7. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780123744074003198. [Last accessed on 17 Aug 2023].

37. Jenness R, Sloan RE. The composition of milks of varous species: a review. Dairy Sci Abstr 1970;32:599-612.

38. Kuhn NJ. The lactose and neuraminlactose content of rat milk and mammary tissue. Biochem J 1972;130:177-80.

39. Wojtas E, Zachwieja A, Piksa E, Zielak-Steciwko AE, Szumny A, Jarosz B. Effect of soy lecithin supplementation in beef cows before calving on colostrum composition and serum total protein and immunoglobulin G concentrations in calves. Animals 2020;10:765.

40. Ludwiczak A, Składanowska-Baryza J, Kuczyńska B, Stanisz M. Hycole doe milk properties and kit growth. Animals 2020;10:214.

41. Henrick BM, Rodriguez L, Lakshmikanth T, et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 2021;184:3884-98.e11.

42. Laursen MF, Sakanaka M, von Burg N, et al. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nat Microbiol 2021;6:1367-82.

43. Sakurama H, Kiyohara M, Wada J, et al. Lacto-N-biosidase encoded by a novel gene of bifidobacterium longum subspecies longum shows unique substrate specificity and requires a designated chaperone for its active expression. J Biol Chem 2013;288:25194-206.

44. Wada J, Ando T, Kiyohara M, et al. Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl Environ Microbiol 2008;74:3996-4004.

45. Katayama T, Sakuma A, Kimura T, et al. Molecular cloning and characterization of bifidobacterium bifidum 1,2-alpha-L-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). J Bacteriol 2004;186:4885-93.

46. Sakurama H, Fushinobu S, Hidaka M, et al. 1,3-1,4-α-L-fucosynthase that specifically introduces Lewis a/x antigens into type-1/2 chains. J Biol Chem 2012;287:16709-19.

47. Kiyohara M, Tanigawa K, Chaiwangsri T, Katayama T, Ashida H, Yamamoto K. An exo-alpha-sialidase from bifidobacteria involved in the degradation of sialyloligosaccharides in human milk and intestinal glycoconjugates. Glycobiology 2011;21:437-47.

48. Moeller AH, Caro-Quintero A, Mjungu D, et al. Cospeciation of gut microbiota with hominids. Science 2016;353:380-2.

49. Goto K, Fukuda K, Senda A, et al. Chemical characterization of oligosaccharides in the milk of six species of new and old world monkeys. Glycoconj J 2010;27:703-15.

50. Bottacini F, Milani C, Turroni F, et al. Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut. PLoS One 2012;7:e44229.

51. Zuo F, Marcotte H. Advancing mechanistic understanding and bioengineering of probiotic lactobacilli and bifidobacteria by genome editing. Curr Opin Biotechnol 2021;70:75-82.

52. Gacesa R, Kurilshikov A, Vich Vila A, et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 2022;604:732-9.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/