REFERENCES

1. Klein AM, Vaissière BE, Cane JH, et al. Importance of pollinators in changing landscapes for world crops. Proc Biol Sci 2007;274:303-13.

2. Newstrom-Lloyd LE. Pollination in New Zealand. In: Dymond JR, editor. Ecosystem services in New Zealand : conditions and trends. Lincoln: Manaaki Whenua Press; 2013. p. 408-431. Available from: http://www.mwpress.co.nz/__data/assets/pdf_file/0008/77057/2_11_Newstrom.pdf. [Last accessed on 26 Jul 2023].

3. Ministry for Primary Industries. 2021 apiculture monitoring data. Available from: https://www.mpi.govt.nz/dmsdocument/48793-2021-Apiculture-monitoring-report-data. [Last accessed on 26 Jul 2023].

4. Li G, Zhao H, Liu Z, Wang H, Xu B, Guo X. The wisdom of honeybee defenses against environmental stresses. Front Microbiol 2018;9:722.

5. Genersch E. American Foulbrood in honeybees and its causative agent, Paenibacillus larvae. J Invertebr Pathol 2010;103:S10-9.

6. Genersch E. Paenibacillus larvae and American Foulbrood - long since known and still surprising. J Verbr Lebensm 2008;3:429-34.

7. Alippi AM, Reynaldi FJ, López AC, De Giusti MR, Aguilar OM. Molecular epidemiology of Paenibacillus larvae larvae and incidence of American Foulbrood in Argentinean honeys from Buenos Aires province. J Apic Res 2004;43:135-43.

8. Rauch S, Ashiralieva A, Hedtke K, Genersch E. Negative correlation between individual-insect-level virulence and colony-level virulence of Paenibacillus larvae, the etiological agent of American Foulbrood of honeybees. Appl Environ Microbiol 2009;75:3344-7.

9. Alippi AM, López AC, Aguilar OM. Differentiation of Paenibacillus larvae subsp. larvae, the cause of American Foulbrood of honeybees, by using PCR and restriction fragment analysis of genes encoding 16S rRNA. Appl Environ Microbiol 2022;68:3655-60.

10. Lester P. Healthy bee, sick bee: the influence of parasites, pathogens, predators and pesticides on honey bees. Victoria University of Wellington Press; 2021. Available from: https://play.google.com/books/reader?id=fY4bEAAAQBAJ&pg=GBS.PP1&hl=en. [Last accessed on 26 Jul 2023].

11. Kok DN, Hendrickson HL. Save our bees: bacteriophages to protect honey bees against the pathogen causing American Foulbrood in New Zealand. N Z J Zool 2023;1-16.

12. Goodwin M. American Foulbrood control: the New Zealand approach. Bee World 2005;86:44-5.

13. The management agency national american foulbrood pest management plan. Available from: https://afb.org.nz/wp-content/uploads/2018/07/BRIEFING-DOCUMENT-MPI-Government-01112017.pdf. [Last accessed on 31 Jul 2023].

14. Biosecurity (National American Foulbrood Pest Management Plan) Order 1998. 1998. p. 1-21. Available from: https://afb.org.nz/wp-content/uploads/2018/10/Biosecurity-National-American-Foulbrood-Pest-Management-Plan-Order-1998.pdf. [Last accessed on 25 Jul 2023].

15. Mushegian AR. Are there 1031 virus particles on earth, or more, or fewer? J Bacteriol 2020;202:e0052-20.

16. Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci USA 1999;96:2192-2197.

17. Yost DG, Tsourkas P, Amy PS. Experimental bacteriophage treatment of honeybees (Apis mellif era) infected with Paenibacillus larvae, the causative agent of American Foulbrood Disease. Bacteriophage 2016;6:e1122698.

18. Brady TS, Merrill BD, Hilton JA, Payne AM, Stephenson MB, Hope S. Bacteriophages as an alternative to conventional antibiotic use for the prevention or treatment of Paenibacillus larvae in honeybee hives. J Invertebr Pathol 2017;150:94-100.

19. Stamereilers C, Fajardo CP, Walker JK, et al. Genomic analysis of 48 Paenibacillus larvae bacteriophages. Viruses 2018;10:377.

20. Graham SAM. American foulbrood and its causative agent, Paenibacillus larvae, in new zealand’s registered hives and apiaries. Available from: https://openaccess.wgtn.ac.nz/articles/thesis/American_foulbrood_and_its_causative_agent_Paenibacillus_larvae_in_New_Zealand_s_registered_hives_and_apiaries/17013008. [Last accessed on 26 Jul 2023].

21. Dingman DW, Stahly DP. Medium promoting sporulation of Bacillus larvae and metabolism of medium components. Appl Environ Microbiol 1983;46:860-9.

22. de Graaf DC, Alippi AM, Antúnez K, et al. Standard methods for American Foulbrood research. J Apic Res 2013;52:1-28.

23. Dobbelaere W, de Graaf DC, Peeters JE. Development of a fast and reliable diagnostic method for American Foulbrood disease (Paenibacillus larvae subsp. larvae) using a 16S rRNA gene based PCR. Apidologie 2001;32:363-70.

24. Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455-77.

25. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes De Novo assembler. Curr Protoc Bioinformatics 2020;70:e102.

26. Overbeek R, Olson R, Pusch GD, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014;42:D206-14.

27. Brettin T, Davis JJ, Disz T, et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015;5:8365.

28. Aziz RK, Bartels D, Best AA, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75.

29. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068-9.

30. Kok DN, Turnbull J, Takeuchi N, Tsourkas PK, Hendrickson HL. In Vitro evolution to increase the titers of difficult bacteriophages: RAMP-UP protocol. Phage 2023;4:68-81.

31. Santos MA. An improved method for the small scale preparation of bacteriophage DNA based on phage precipitation by zinc chloride. Nucleic Acids Res 1991;19:5442.

32. Lazeroff M, Ryder G, Harris SL, Tsourkas PK. Phage commander, an application for rapid gene identification in bacteriophage genomes using multiple programs. Phage 2021;2:204-13.

33. Pope WH, Jacobs-sera D. Annotation of bacteriophage genome sequences using DNA master: an overview. In: Clokie MR, Kropinski AM, Lavigne R, editors. Bacteriophages. New York: Springer; 2018. p. 217-29.

34. Salisbury A, Tsourkas PK. A method for improving the accuracy and efficiency of bacteriophage genome annotation. Int J Mol Sci 2019;20:3391.

35. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018;3:124.

36. Morrissey BJ, Helgason T, Poppinga L, Fünfhaus A, Genersch E, Budge GE. Biogeography of Paenibacillus larvae, the causative agent of American Foulbrood, using a new multilocus sequence typing scheme. Environ Microbiol 2015;17:1414-24.

37. Papić B, Diricks M, Kušar D. Analysis of the global population structure of Paenibacillus larvae and outbreak investigation of American Foulbrood using a stable wgMLST scheme. Front Vet Sci 2021;8:582677.

38. Binney BM, Pragert H, Foxwell J, et al. Genomic analysis of the population structure of Paenibacillus larvae in New Zealand. Front Microbiol 2023;14:1161926.

39. Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007;35:W52-7.

40. Tesson F, Hervé A, Mordret E, et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat Commun 2022;13:2561.

41. Abby SS, Néron B, Ménager H, Touchon M, Rocha EP. MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PLoS One 2014;9:e110726.

42. Oliveira PH, Touchon M, Rocha EP. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res 2014;42:10618-31.

43. Gao L, Altae-Tran H, Böhning F, et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 2020;369:1077-84.

44. Bernheim A, Bikard D, Touchon M, Rocha EPC. Atypical organizations and epistatic interactions of CRISPRs and cas clusters in genomes and their mobile genetic elements. Nucleic Acids Res 2020;48:748-60.

45. Doron S, Melamed S, Ofir G, et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 2018;359:eaar4120.

46. Millman A, Melamed S, Leavitt A, et al. An expanded arsenal of immune systems that protect bacteria from phages. Cell Host Microbe 2022;30:1556-69.

47. Arndt D, Grant JR, Marcu A, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016;44:W16-21.

48. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res 2011;39:W347-52.

49. Tsourkas PK, Yost DG, Krohn A, et al. Complete genome sequences of nine phages capable of infecting Paenibacillus larvae, the causative agent of American Foulbrood disease in honeybees. Genome Announc 2015;3:e01120-15.

50. Tsourkas PK. Paenibacillus larvae bacteriophages: obscure past, promising future. Microb Genom 2020;6:e000329.

51. Ebeling J, Fünfhaus A, Genersch E. The buzz about ADP-ribosylation toxins from Paenibacillus larvae, the causative agent of American Foulbrood in honey bees. Toxins 2021;13:151.

52. Fünfhaus A, Poppinga L, Genersch E. Identification and characterization of two novel toxins expressed by the lethal honey bee pathogen Paenibacillus larvae, the causative agent of American Foulbrood. Environ Microbiol 2013;15:2951-65.

53. Ackermann HW. Bacteriophage observations and evolution. Res Microbiol 2003;154:245-51.

54. Ministry for Primary Industries. ApiWellbeing. Available from: https://www.mpi.govt.nz/biosecurity/how-to-find-report-and-prevent-pests-and-diseases/bee-biosecurity/apiwellbeing/. [Last accessed on 26 Jul 2023].

55. King C. American foulbrood. Surveillance 2020;47:42. Available from: https://www.mpi.govt.nz/dmsdocument/43978. [Last accessed on 31 Jul 2023]

56. Abedon ST, Danis-Wlodarczyk KM, Wozniak DJ. Phage cocktail development for bacteriophage therapy: toward improving spectrum of activity breadth and depth. Pharmaceuticals 2021;14:1019.

57. Stamereilers C, Wong S, Tsourkas PK. Characterization of CRISPR spacer and protospacer sequences in Paenibacillus larvae and its bacteriophages. Viruses 2021;13:459.

58. Ribeiro HG, Nilsson A, Melo LDR, Oliveira A. Analysis of intact prophages in genomes of Paenibacillus larvae: an important pathogen for bees. Front Microbiol 2022;13:903861.

59. Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The biology of CRISPR-Cas: backward and forward. Cell 2018;172:1239-59.

60. Loenen WA, Raleigh EA. The other face of restriction: modification-dependent enzymes. Nucleic Acids Res 2014;42:56-69.

61. Gochnauer T A. Some properties of a bacteriophage from Bacillus larvae. J Invertebr Pathol 1970;15:149-156.

62. Merrill BD, Fajardo CP, Hilton JA, et al. Complete genome sequences of 18 Paenibacillus larvae phages from the western United States. Microbiol Resour Announc 2018;7:e00966-18.

63. Jończyk-Matysiak E, Owczarek B, Popiela E, et al. Isolation and characterization of phages active against Paenibacillus larvae causing American Foulbrood in honeybees in Poland. Viruses 2021;13:1217.

64. Carson S, Bruff E, DeFoor W, et al. Genome sequences of six Paenibacillus larvae siphoviridae phages. Genome Announc 2015;3:e00101-15.

65. Walker JK, Merrill BD, Berg JA, et al. Complete genome sequences of Paenibacillus larvae phages BN12, Dragolir, Kiel007, Leyra, Likha, Pagassa, PBL1c, and Tadhana. Genome Announc 2018;6:e01602-17.

66. Beims H, Wittmann J, Bunk B, et al. Paenibacillus larvae-directed bacteriophage HB10c2 and its application in American Foulbrood-affected honey bee larvae. Appl Environ Microbiol 2015;81:5411-9.

67. Oliveira A, Melo LD, Kropinski AM, Azeredo J. Complete genome sequence of the broad-host-range Paenibacillus larvae phage phiIBB_Pl23. Genome Announc 2013;1:e00438-13.

68. Ribeiro HG, Melo LDR, Oliveira H, et al. Characterization of a new podovirus infecting Paenibacillus larvae. Sci Rep 2019;9:20355.

69. Yost DG, Chang C, LeBlanc L, et al. Complete genome sequences of Paenibacillus larvae phages halcyone, heath, scottie, and unity from Las Vegas, Nevada. Microbiol Resour Announc 2018;7:e00977-18.

70. Citizen Phage Library. Available from: https://www.citizenphage.com. [Last accessed on 26 Jul 2023].

71. Forti F, Roach DR, Cafora M, et al. Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrob Agents Chemother 2018;62:e02573-17.

72. Niu YD, Liu H, Du H, et al. Efficacy of individual bacteriophages does not predict efficacy of bacteriophage cocktails for control of Escherichia coli O157. Front Microbiol 2021;12:616712.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/