REFERENCES

1. Khaldi N, Vijayakumar V, Dallas DC, et al. Predicting the important enzymes in human breast milk digestion. J Agric Food Chem 2014;62:7225-32.

2. Neville MC, Anderson SM, McManaman JL, et al. Lactation and neonatal nutrition: defining and refining the critical questions. J Mammary Gland Biol Neoplasia 2012;17:167-88.

3. Böttcher MF, Jenmalm MC, Garofalo RP, Björkstén B. Cytokines in breast milk from allergic and nonallergic mothers. Pediatr Res 2000;47:157-62.

4. Valverde R, Dinerstein N, Vain N. Mother’s own milk and donor milk. In: Koletzko B, Cheah F, Domellöf M, Poindexter BB, Vain N, van Goudoever JB, editors. Nutritional Care of Preterm Infants. S. Karger AG; 2021. pp. 212-24.

5. Grote V, Verduci E, Scaglioni S, et al. Breast milk composition and infant nutrient intakes during the first 12 months of life. Eur J Clin Nutr 2016;70:250-6.

6. Sela DA, Mills DA. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol 2010;18:298-307.

7. Kent JC, Mitoulas LR, Cregan MD, Ramsay DT, Doherty DA, Hartmann PE. Volume and frequency of breastfeedings and fat content of breast milk throughout the day. Pediatrics 2006;117:e387-95.

8. Koletzko B. Human milk lipids. Ann Nutr Metab 2016;69 Suppl 2:28-40.

9. Kamao M, Tsugawa N, Suhara Y, et al. Quantification of fat-soluble vitamins in human breast milk by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2007;859:192-200.

10. Garwolińska D, Namieśnik J, Kot-Wasik A, Hewelt-Belka W. Chemistry of human breast milk-a comprehensive review of the composition and role of milk metabolites in child development. J Agric Food Chem 2018;66:11881-96.

11. Kalkwarf HJ, Zemel BS, Yolton K, Heubi JE. Bone mineral content and density of the lumbar spine of infants and toddlers: influence of age, sex, race, growth, and human milk feeding. J Bone Miner Res 2013;28:206-12.

12. Yuksel S, Yigit AA, Cinar M, Atmaca N, Onaran Y. Oxidant and antioxidant status of human breast milk during lactation period. Dairy Sci Technol 2015;95:295-302.

13. Miyake H, Lee C, Chusilp S, et al. Human breast milk exosomes attenuate intestinal damage. Pediatr Surg Int 2020;36:155-63.

14. Cavaletto M, Giuffrida MG, Conti A. Milk fat globule membrane components-a proteomic approach. In: Bösze Z, editor. Bioactive Components of Milk. New York: Springer; 2008. pp. 129-41.

15. Seki D, Schauberger C, Hausmann B, Berger A, Wisgrill L, Berry D. Individuality of the extremely premature infant gut microbiota is driven by ecological drift. mSystems 2022;7:e0016322.

16. Martinez-Guryn K, Hubert N, Frazier K, et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 2018;23:458-469.e5.

17. Thum C, Wall C, Day L, et al. Changes in human milk fat globule composition throughout lactation: a review. Front Nutr 2022;9:835856.

18. Brink LR, Lönnerdal B. Milk fat globule membrane: the role of its various components in infant health and development. J Nutr Biochem 2020;85:108465.

19. Gurnida DA, Rowan AM, Idjradinata P, Muchtadi D, Sekarwana N. Association of complex lipids containing gangliosides with cognitive development of 6-month-old infants. Early Hum Dev 2012;88:595-601.

20. Park EJ, Suh M, Ramanujam K, Steiner K, Begg D, Clandinin MT. Diet-induced changes in membrane gangliosides in rat intestinal mucosa, plasma and brain. J Pediatr Gastroenterol Nutr 2005;40:487-95.

21. Yu RK, Tsai YT, Ariga T, Yanagisawa M. Structures, biosynthesis, and functions of gangliosides - an overview. J Oleo Sci 2011;60:537-44.

22. Rueda R. The role of dietary gangliosides on immunity and the prevention of infection. Br J Nutr 2007;98 Suppl 1:S68-73.

23. Bode L, Beermann C, Mank M, Kohn G, Boehm G. human and bovine milk gangliosides differ in their fatty acid composition. J Nutr 2004;134:3016-20.

24. Ma L, Macgibbon AK, Jan Mohamed HJB, et al. Determination of ganglioside concentrations in breast milk and serum from Malaysian mothers using a high performance liquid chromatography-mass spectrometry-multiple reaction monitoring method. Int Dairy J 2015;49:62-71.

25. Salcedo J, Barbera R, Matencio E, Alegría A, Lagarda MJ. Gangliosides and sialic acid effects upon newborn pathogenic bacteria adhesion: an in vitro study. Food Chem 2013;136:726-34.

26. Bergner DW, Kuhlenschmidt TB, Hanafin WP, Firkins LD, Kuhlenschmidt MS. Inhibition of rotavirus infectivity by a neoglycolipid receptor mimetic. Nutrients 2011;3:228-44.

27. Terabayashi T, Morita M, Ueno M, Nakamura T, Urashima T. Inhibition of influenza-virus-induced cytopathy by sialylglycoconjugates. Carbohydr Res 2006;341:2246-53.

28. Wölfl M, Batten WY, Posovszky C, Bernhard H, Berthold F. Gangliosides inhibit the development from monocytes to dendritic cells. Clin Exp Immunol 2002;130:441-8.

29. Lee H, Garrido D, Mills DA, Barile D. Hydrolysis of milk gangliosides by infant-gut associated bifidobacteria determined by microfluidic chips and high-resolution mass spectrometry. Electrophoresis 2014;35:1742-50.

30. Zhou J, Xiong X, Wang KX, Zou LJ, Ji P, Yin YL. Ethanolamine enhances intestinal functions by altering gut microbiome and mucosal anti-stress capacity in weaned rats. Br J Nutr 2018;120:241-9.

31. Buddington RK, Chizhikov VV, Iskusnykh IY, et al. A phosphatidylserine source of docosahexanoic acid improves neurodevelopment and survival of preterm pigs. Nutrients 2018;10:637.

32. Hu S, Du M, Su L, Yang H. Phosphatidylserine from portunus trituberculatus eggs alleviates insulin resistance and alters the gut microbiota in high-fat-diet-fed mice. Mar Drugs 2020;18:483.

33. Silber P, Borie RP, Mikowski EJ, Goldfine H. Phospholipid biosynthesis in some anaerobic bacteria. J Bacteriol 1981;147:57-61.

34. Rocha-Mendoza D, Kosmerl E, Miyagusuku-Cruzado G, Giusti MM, Jiménez-Flores R, García-Cano I. Growth of lactic acid bacteria in milk phospholipids enhances their adhesion to Caco-2 cells. J Dairy Sci 2020;103:7707-18.

35. Geiger O, López-Lara IM, Sohlenkamp C. Phosphatidylcholine biosynthesis and function in bacteria. Biochim Biophys Acta 2013;1831:503-13.

36. Vulevic J, Gibson GR. In vitro effects of phosphatidylcholine and transgalactooligosaccharides on the production of 1,2-sn-diacylglycerol by Bifidobacterium longum biovar infantis. J Appl Microbiol 2008;105:1678-85.

37. Sprong RC, Hulstein MF, Van der Meer R. Bactericidal activities of milk lipids. Antimicrob Agents Chemother 2001;45:1298-301.

38. Norris G, Porter C, Jiang C, Blesso C. Dietary milk sphingomyelin reduces systemic inflammation in diet-induced obese mice and inhibits LPS activity in macrophages. Beverages 2017;3:37.

39. Norris GH, Jiang C, Ryan J, Porter CM, Blesso CN. Milk sphingomyelin improves lipid metabolism and alters gut microbiota in high fat diet-fed mice. J Nutr Biochem 2016;30:93-101.

40. Gupta VR, Patel HK, Kostolansky SS, Ballivian RA, Eichberg J, Blanke SR. Sphingomyelin functions as a novel receptor for Helicobacter pylori VacA. PLoS Pathog 2008;4:e1000073.

41. Possemiers S, Van Camp J, Bolca S, Verstraete W. Characterization of the bactericidal effect of dietary sphingosine and its activity under intestinal conditions. Int J Food Microbiol 2005;105:59-70.

42. Ham Y, Kim TJ. Inhibitory activity of monoacylglycerols on biofilm formation in Aeromonas hydrophila, Streptococcus mutans, Xanthomonas oryzae, and Yersinia enterocolitica. Springerplus 2016;5:1526.

43. Wang ZJ, Liang CL, Li GM, Yu CY, Yin M. Stearic acid protects primary cultured cortical neurons against oxidative stress. Acta Pharmacol Sin 2007;28:315-26.

44. Ivanova EP, Nguyen SH, Guo Y, et al. Bactericidal activity of self-assembled palmitic and stearic fatty acid crystals on highly ordered pyrolytic graphite. Acta Biomater 2017;59:148-57.

45. Yaron S, Shachar D, Abramas L, et al. Effect of high β-palmitate content in infant formula on the intestinal microbiota of term infants. J Pediatr Gastroenterol Nutr 2013;56:376-81.

46. Williams VR, Fieger E. Oleic acid as a growth stimulant for lactobacillus Casei. J Biol Chem 1946;166:335-43.

47. Huang WC, Tsai TH, Chuang LT, Li YY, Zouboulis CC, Tsai PJ. Anti-bacterial and anti-inflammatory properties of capric acid against Propionibacterium acnes: a comparative study with lauric acid. J Dermatol Sci 2014;73:232-40.

48. Wright MH, Heal WP, Mann DJ, Tate EW. Protein myristoylation in health and disease. J Chem Biol 2010;3:19-35.

49. Oepen K, Özbek H, Schüffler A, Liermann JC, Thines E, Schneider D. Myristic acid inhibits the activity of the bacterial ABC transporter BmrA. Int J Mol Sci 2021;22:13565.

50. Le TT, Van de Wiele T, Do TN, et al. Stability of milk fat globule membrane proteins toward human enzymatic gastrointestinal digestion. J Dairy Sci 2012;95:2307-18.

51. Kenny DJ, Plichta DR, Shungin D, et al. Cholesterol metabolism by uncultured human gut bacteria influences host cholesterol level. Cell Host Microbe 2020;28:245-257.e6.

52. Beasley A, Amir LH. Infant feeding, poverty and human development. Int Breastfeed J 2007;2:14.

53. Stewart CJ, Ajami NJ, O'Brien JL, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018;562:583-8.

54. Cunnane SC, Crawford MA. Energetic and nutritional constraints on infant brain development: implications for brain expansion during human evolution. J Hum Evol 2014;77:88-98.

55. Demmelmair H, Koletzko B. Lipids in human milk. Best Pract Res Clin Endocrinol Metab 2018;32:57-68.

56. Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The central nervous system and the gut microbiome. Cell 2016;167:915-32.

57. He X, McClorry S, Hernell O, Lönnerdal B, Slupsky CM. Digestion of human milk fat in healthy infants. Nutr Res 2020;83:15-29.

58. Moreau H, Bernadac A, Gargouri Y, Benkouka F, Laugier R, Verger R. Immunocytolocalization of human gastric lipase in chief cells of the fundic mucosa. Histochemistry 1989;91:419-23.

59. Murphy GM, Signer E. Bile acid metabolism in infants and children. Gut 1974;15:151-63.

60. Javitt NB. Bile acid synthesis from cholesterol: regulatory and auxiliary pathways. FASEB J 1994;8:1308-11.

61. Reshetnyak VI. Physiological and molecular biochemical mechanisms of bile formation. World J Gastroenterol 2013;19:7341-60.

62. ENCRANTZ JC, SJOVALL J. On the bile acids in duodenal contents of infants and children. Bile acids and steroids 72. Clin Chim Acta 1959;4:793-9.

63. Reis P, Holmberg K, Watzke H, Leser ME, Miller R. Lipases at interfaces: a review. Adv Colloid Interf Sci 2009;147-148:237-50.

64. Hernell O, Bläckberg L. Human milk bile salt-stimulated lipase: functional and molecular aspects. J Pediatr 1994;125:S56-61.

65. Chen ML, Takeda K, Sundrud MS. Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol 2019;12:851-61.

66. Bourgin M, Kriaa A, Mkaouar H, et al. Bile salt hydrolases: at the crossroads of microbiota and human health. Microorganisms 2021;9:1122.

67. Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006;47:241-59.

68. Hayashi H, Takahashi R, Nishi T, Sakamoto M, Benno Y. Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol 2005;54:1093-101.

69. Kastl AJ Jr, Terry NA, Wu GD, Albenberg LG. The structure and function of the human small intestinal microbiota: current understanding and future directions. Cell Mol Gastroenterol Hepatol 2020;9:33-45.

70. Núñez-Sánchez MA, Herisson FM, Keane JM, et al. Microbial bile salt hydrolase activity influences gene expression profiles and gastrointestinal maturation in infant mice. Gut Microbes 2022;14:2149023.

71. Kumar RS, Brannigan JA, Prabhune AA, et al. Structural and functional analysis of a conjugated bile salt hydrolase from Bifidobacterium longum reveals an evolutionary relationship with penicillin V acylase. J Biol Chem 2006;281:32516-25.

72. Chand D, Panigrahi P, Varshney N, Ramasamy S, Suresh CG. Structure and function of a highly active Bile Salt Hydrolase (BSH) from Enterococcus faecalis and post-translational processing of BSH enzymes. Biochim Biophys Acta Proteins Proteom 2018;1866:507-18.

73. Rossocha M, Schultz-Heienbrok R, von Moeller H, Coleman JP, Saenger W. Conjugated bile acid hydrolase is a tetrameric N-terminal thiol hydrolase with specific recognition of its cholyl but not of its tauryl product. Biochemistry 2005;44:5739-48.

74. Parasar B, Zhou H, Xiao X, Shi Q, Brito IL, Chang PV. Chemoproteomic profiling of gut microbiota-associated bile salt hydrolase activity. ACS Cent Sci 2019;5:867-73.

75. Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 2008;7:678-93.

76. Ogilvie LA, Jones BV. Dysbiosis modulates capacity for bile acid modification in the gut microbiomes of patients with inflammatory bowel disease: a mechanism and marker of disease? Gut 2012;61:1642-3.

77. Campbell C, McKenney PT, Konstantinovsky D, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 2020;581:475-9.

78. Lee H, Padhi E, Hasegawa Y, et al. Compositional dynamics of the milk fat globule and its role in infant development. Front Pediatr 2018;6:313.

79. Mizuno K, Nishida Y, Taki M, et al. Is increased fat content of hindmilk due to the size or the number of milk fat globules? Int Breastfeed J 2009;4:7.

80. Michalski MC, Briard V, Michel F, Tasson F, Poulain P. Size distribution of fat globules in human colostrum, breast milk, and infant formula. J Dairy Sci 2005;88:1927-40.

81. Cilla A, Diego Quintaes K, Barberá R, Alegría A. Phospholipids in human milk and infant formulas: benefits and needs for correct infant nutrition. Crit Rev Food Sci Nutr 2016;56:1880-92.

82. Ortega-Anaya J, Marciniak A, Jiménez-Flores R. Milk fat globule membrane phospholipids modify adhesion of Lactobacillus to mucus-producing Caco-2/Goblet cells by altering the cell envelope. Food Res Int 2021;146:110471.

83. Tien MT, Girardin SE, Regnault B, et al. Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J Immunol 2006;176:1228-37.

84. Norris GH, Milard M, Michalski MC, Blesso CN. Protective properties of milk sphingomyelin against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. J Nutr Biochem 2019;73:108224.

85. Rusconi B, Jiang X, Sidhu R, Ory DS, Warner BB, Tarr PI. Gut sphingolipid composition as a prelude to necrotizing enterocolitis. Sci Rep 2018;8:10984.

86. Kamelska AM, Pietrzak-fiećko R, Bryl K. Variation of the cholesterol content in breast milk during 10 days collection at early stages of lactation. Acta Biochim Pol 2012:59.

87. Guittar J, Shade A, Litchman E. Trait-based community assembly and succession of the infant gut microbiome. Nat Commun 2019;10:512.

88. Seki D, Mayer M, Hausmann B, et al. Aberrant gut-microbiota-immune-brain axis development in premature neonates with brain damage. Cell Host Microbe 2021;29:1558-1572.e6.

89. Benakis C, Brea D, Caballero S, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med 2016;22:516-23.

90. Pérez-Reytor D, Puebla C, Karahanian E, García K. Use of short-chain fatty acids for the recovery of the intestinal epithelial barrier affected by bacterial toxins. Front Physiol 2021;12:650313.

91. Jiang Z, Liu Y, Zhu Y, et al. Characteristic chromatographic fingerprint study of short-chain fatty acids in human milk, infant formula, pure milk and fermented milk by gas chromatography-mass spectrometry. Int J Food Sci Nutr 2016;67:632-40.

92. Cacho NT, Harrison NA, Parker LA, et al. Personalization of the microbiota of donor human milk with mother’s own milk. Front Microbiol 2017;8:1470.

93. Alur P. Sex differences in nutrition, growth, and metabolism in preterm infants. Front Pediatr 2019;7:22.

94. Isaacs EB, Fischl BR, Quinn BT, Chong WK, Gadian DG, Lucas A. Impact of breast milk on intelligence quotient, brain size, and white matter development. Pediatr Res 2010;67:357-62.

95. Jašarević E, Morrison KE, Bale TL. Sex differences in the gut microbiome-brain axis across the lifespan. Philos Trans R Soc Lond B Biol Sci 2016;371:20150122.

96. Alur P, Ramarao S. Sex differences in preterm nutrition and growth: the evidence from human milk associated studies. J Perinatol 2022;42:987-92.

97. Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr 2013;13:59.

98. Powe CE, Knott CD, Conklin-Brittain N. Infant sex predicts breast milk energy content. Am J Hum Biol 2010;22:50-4.

99. Cong X, Xu W, Janton S, et al. Gut microbiome developmental patterns in early life of preterm infants: impacts of feeding and gender. PloS One 2016;11:e0152751.

100. Kozyrskyj AL, Kalu R, Koleva PT, Bridgman SL. Fetal programming of overweight through the microbiome: boys are disproportionately affected. J Dev Orig Health Dis 2016;7:25-34.

101. Jašarević E, Howard CD, Misic AM, Beiting DP, Bale TL. Stress during pregnancy alters temporal and spatial dynamics of the maternal and offspring microbiome in a sex-specific manner. Sci Rep 2017;7:44182.

102. Calvo-Lerma J, Selma-Royo M, Hervas D, et al. Breast milk lipidome is associated with maternal diet and infants’ growth. Front Nutr 2022;9:854786.

103. Bhurosy T, Jeewon R. Overweight and obesity epidemic in developing countries: a problem with diet, physical activity, or socioeconomic status? ScientificWorldJournal 2014;2014:964236.

104. Stunkard AJ, Sørensen TI. Obesity and socioeconomic status - a complex relation. N Engl J Med 1993;329:1036-7.

105. Rocquelin G, Tapsoba S, Dop MC, Mbemba F, Traissac P, Martin-Prével Y. Lipid content and essential fatty acid (EFA) composition of mature Congolese breast milk are influenced by mothers' nutritional status: impact on infants’ EFA supply. Eur J Clin Nutr 1998;52:164-71.

106. Al-Tamer YY, Mahmood AA. The influence of Iraqi mothers’ socioeconomic status on their milk-lipid content. Eur J Clin Nutr 2006;60:1400-5.

107. Fujita M, Roth E, Lo YJ, Hurst C, Vollner J, Kendell A. In poor families, mothers’ milk is richer for daughters than sons: a test of Trivers-Willard hypothesis in agropastoral settlements in Northern Kenya. Am J Phys Anthropol 2012;149:52-9.

108. Berry D, Loy A. Stable-isotope probing of human and animal microbiome function. Trends Microbiol 2018;26:999-1007.

109. Levine MM, Nasrin D, Acácio S, et al. Diarrhoeal disease and subsequent risk of death in infants and children residing in low-income and middle-income countries: analysis of the GEMS case-control study and 12-month GEMS-1A follow-on study. Lancet Glob Health 2020;8:e204-14.

110. Nakamura S, Kiyohara Y, Jinnai H, et al. Mammalian phospholipase D: phosphatidylethanolamine as an essential component. Proc Natl Acad Sci USA 1996;93:4300-4.

111. Rajkumar K, Nichita A, Anoor PK, Raju S, Singh SS, Burgula S. Understanding perspectives of signalling mechanisms regulating PEBP1 function. Cell Biochem Funct 2016;34:394-403.

112. Vance JE. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J Lipid Res 2008;49:1377-87.

113. Kimura AK, Kim HY. Phosphatidylserine synthase 2: high efficiency for synthesizing phosphatidylserine containing docosahexaenoic acid. J Lipid Res 2013;54:214-22.

114. Dohi M, Tamura G, Arima K. Effects of Phosphatidylinositol on Bacterial Protoplasts. Agric Biol Chem 1973;37:1797-807.

115. Zhang X, Majerus PW. Phosphatidylinositol signalling reactions. Semin Cell Dev Biol 1998;9:153-60.

116. . Back Matter. In: Zibadi S, Watson RR, Preedy VR, editors. Handbook of dietary and nutritional aspects of human breast milk. The Netherlands: Wageningen Academic Publishers; 2013. pp. 834-52.

117. Petersen EN, Chung HW, Nayebosadri A, Hansen SB. Kinetic disruption of lipid rafts is a mechanosensor for phospholipase D. Nat Commun 2016;7:13873.

118. Molinero N, Ruiz L, Sánchez B, Margolles A, Delgado S. Intestinal bacteria interplay with bile and cholesterol metabolism: implications on host physiology. Front Physiol 2019;10:185.

119. Paik JH, Chae Ss, Lee MJ, Thangada S, Hla T. Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha vbeta3- and beta1-containing integrins. J Biol Chem 2001;276:11830-7.

120. Spiegel S, Milstien S. Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem 2002;277:25851-4.

121. Duan RD, Cheng Y, Jönsson BA, et al. Human meconium contains significant amounts of alkaline sphingomyelinase, neutral ceramidase, and sphingolipid metabolites. Pediatr Res 2007;61:61-6.

122. Newburg DS, Chaturvedi P. Neutral glycolipids of human and bovine milk. Lipids 1992;27:923-7.

123. Basson A, Trotter A, Rodriguez-Palacios A, Cominelli F. Mucosal interactions between genetics, diet, and microbiome in inflammatory bowel disease. Front Immunol 2016;7:290.

124. Innis SM, Dyer R, Nelson CM. Evidence that palmitic acid is absorbed as sn-2 monoacylglycerol from human milk by breast-fed infants. Lipids 1994;29:541-5.

125. Yao J, Rock CO. How bacterial pathogens eat host lipids: implications for the development of fatty acid synthesis therapeutics. J Biol Chem 2015;290:5940-6.

126. Hosomi K, Kiyono H, Kunisawa J. Fatty acid metabolism in the host and commensal bacteria for the control of intestinal immune responses and diseases. Gut Microbes 2020;11:276-84.

127. Isaacs CE. The antimicrobial function of milk lipids. In: Woodward B, Draper HH, editors. Advances in Nutritional Research Volume 10. Boston: Springer US; 2002. pp. 271-85.

128. Senyilmaz-Tiebe D, Pfaff DH, Virtue S, et al. Dietary stearic acid regulates mitochondria in vivo in humans. Nat Commun 2018;9:3129.

129. Nie W, Xu F, Zhou K, Yang X, Zhou H, Xu B. Stearic acid prevent alcohol-induced liver damage by regulating the gut microbiota. Food Res Int 2022;155:111095.

130. Haviv H, Habeck M, Kanai R, Toyoshima C, Karlish SJD. Neutral phospholipids stimulate Na,K-ATPase activity: a specific lipid-protein interaction. J Biol Chem 2013;288:10073-81.

131. Elias PM, Brown BE, Ziboh VA. The permeability barrier in essential fatty acid deficiency: evidence for a direct role for linoleic acid in barrier function. J Invest Dermatol 1980;74:230-3.

132. Clark KJ, Makrides M, Neumann MA, Gibson RA. Determination of the optimal ratio of linoleic acid to alpha-linolenic acid in infant formulas. J Pediatr 1992;120:S151-8.

133. Hamosh M, Peterson JA, Henderson TR, et al. Protective function of human milk: the milk fat globule. Semin Perinatol 1999;23:242-9.

134. Huyan Z, Pellegrini N, Steegenga W, Capuano E. Insights into gut microbiota metabolism of dietary lipids: the case of linoleic acid. Food Funct 2022;13:4513-26.

135. Ruiz-Núñez B, Dijck-Brouwer DA, Muskiet FA. The relation of saturated fatty acids with low-grade inflammation and cardiovascular disease. J Nutr Biochem 2016;36:1-20.

136. Dayrit FM. The properties of lauric acid and their significance in coconut oil. J Am Oil Chem Soc 2015;92:1-15.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/