REFERENCES

1. Rogowski A, Briggs JA, Mortimer JC, et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat Commun 2015;6:7481.

2. Jung DH, Seo DH, Kim YJ, Chung WH, Nam YD, Park CS. The presence of resistant starch-degrading amylases in Bifidobacterium adolescentis of the human gut. Int J Biol Macromol 2020;161:389-97.

3. Komeno M, Hayamizu H, Fujita K, Ashida H. Two novel α-L-arabinofuranosidases from Bifidobacterium longum subsp. longum belonging to glycoside hydrolase family 43 cooperatively degrade arabinan. Appl Environ Microbiol 2019:85.

4. Kulcinskaja E, Rosengren A, Ibrahim R, Kolenová K, Stålbrand H. Expression and characterization of a Bifidobacterium adolescentis beta-mannanase carrying mannan-binding and cell association motifs. Appl Environ Microbiol 2013;79:133-40.

5. Fujita K, Sakamoto S, Ono Y, et al. Molecular cloning and characterization of a beta-L-arabinobiosidase in Bifidobacterium longum that belongs to a novel glycoside hydrolase family. J Biol Chem 2011;286:5143-50.

6. Fujita K, Takashi Y, Obuchi E, Kitahara K, Suganuma T. Characterization of a novel β-L-arabinofuranosidase in Bifidobacterium longum: functional elucidation of a DUF1680 family member. J Biol Chem 2014;289:5240-9.

7. Fujita K, Sakamoto A, Kaneko S, Kotake T, Tsumuraya Y, Kitahara K. Degradative enzymes for type II arabinogalactan side chains in Bifidobacterium longum subsp. longum. Appl Microbiol Biotechnol 2019;103:1299-310.

8. Sasaki Y, Horigome A, Odamaki T, et al. Novel 3-O-α-D-galactosyl-α-L-arabinofuranosidase for the assimilation of gum arabic arabinogalactan protein in Bifidobacterium longum subsp. longum. Appl Environ Microbiol 2021:87.

9. Sasaki Y, Komeno M, Ishiwata A, et al. Mechanism of cooperative degradation of gum arabic arabinogalactan protein by Bifidobacterium longum surface enzymes. Appl Environ Microbiol 2022;88:e0218721.

10. Watanabe Y, Saito Y, Hara T, et al. Xylan utilisation promotes adaptation of Bifidobacterium pseudocatenulatum to the human gastrointestinal tract. ISME COMMUN 2021:1.

11. Street CA, Anderson DM. Refinement of structures previously proposed for gum arabic and other acacia gum exudates. Talanta 1983;30:887-93.

12. Goodrum LJ, Patel A, Leykam JF, Kieliszewski MJ. Gum arabic glycoprotein contains glycomodules of both extensin and arabinogalactan-glycoproteins. Phytochemistry 2000;54:99-106.

13. Goellner EM, Utermoehlen J, Kramer R, Classen B. Structure of arabinogalactan from Larix laricina and its reactivity with antibodies directed against type-II-arabinogalactans. Carbohyd Polym 2011;86:1739-44.

14. Fincher G, Stone B. A water-soluble arabinogalactan-peptide from wheat endosperm. Aust Jnl Of Bio Sci 1974;27:117.

15. Tischer C. The free reducing oligosaccharides of gum arabic: aids for structural assignments in the polysaccharide. Carbohydrate Polymers ;47:151-8.

16. Odamaki T, Bottacini F, Mitsuyama E, et al. Impact of a bathing tradition on shared gut microbe among Japanese families. Sci Rep 2019;9:4380.

17. Holmes EW, O'brien JS. Separation of glycoprotein-derived oligosaccharides by thin-layer chromatography. Anal Biochem 1979;93:167-70.

18. Utsumi Y, Yoshida M, Francisco, Jr. PB, Sawada T, Kitamura S, Nakamura Y. Quantitative assay method for starch branching enzyme with bicinchoninic acid by measuring the reducing terminals of glucans. J Appl Glycosci 2009;56:215-22.

19. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583-9.

20. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods 2022;19:679-82.

21. Sasaki Y, Uchimura Y, Kitahara K, Fujita K. Characterization of a GH36 α-D-galactosidase associated with assimilation of gum arabic in Bifidobacterium longum subsp. longum JCM7052. J Appl Glycosci 2021;68:47-52.

22. Sasaki Y, Togo N, Kitahara K, Fujita K. Characterization of a GH36 β-L-arabinopyranosidase in Bifidobacterium adolescentis. J Appl Glycosci 2018;65:23-30.

23. Golubev AM, Nagem RA, Brandão Neto JR, et al. Crystal structure of α-galactosidase from Trichoderma reesei and its complex with galactose: implications for catalytic mechanism. J Mol Biol 2004;339:413-22.

24. Jones DR, Uddin MS, Gruninger RJ, et al. Discovery and characterization of family 39 glycoside hydrolases from rumen anaerobic fungi with polyspecific activity on rare arabinosyl substrates. J Biol Chem 2017;292:12606-20.

25. Ichinose H, Fujimoto Z, Honda M, et al. A β-L-arabinopyranosidase from streptomyces avermitilis is a novel member of glycoside hydrolase family 27. J Biol Chem 2009;284:25097-106.

26. Tryfona T, Liang HC, Kotake T, et al. Carbohydrate structural analysis of wheat flour arabinogalactan protein. Carbohydr Res 2010;345:2648-56.

27. Love J, Percival E. 632. The polysaccharides of the green seaweed codium fragile. part II. The water-soluble sulphated polysaccharides. J Chem Soc 1964; doi: 10.1039/jr9640003338.

28. Capek P, Toman R, Kardošová A, Rosík J. Polysaccharides from the roots of the marsh mallow (Althaea officinalis L.): structure of an arabinan. Carbohyd Res 1983;117:133-40.

29. Swamy N, Salimath P. Arabinans from Cajanus cajan cotyledon. Phytochemistry 1991;30:263-5.

30. Ojima MN, Asao Y, Nakajima A, et al. Diversification of a fucosyllactose transporter within the genus Bifidobacterium. Appl Environ Microbiol 2022;88:e0143721.

31. Fujita K, Sakaguchi T, Sakamoto A, Shimokawa M, Kitahara K. Bifidobacterium longum subsp. longum exo-β-1,3-galactanase, an enzyme for the degradation of type II arabinogalactan. Appl Environ Microbiol 2014;80:4577-84.

32. Nie S, Wang C, Cui SW, Wang Q, Xie M, Phillips GO. The core carbohydrate structure of Acacia seyal var. seyal (Gum arabic). Food Hydrocolloids 2013;32:221-7.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/