REFERENCES
1. Turroni F, Sinderen D, Ventura M. Genomics and ecological overview of the genus
2. Fushinobu S. Unique sugar metabolic pathways of bifidobacteria. Biosci Biotechnol Biochem 2010;74:2374-84.
3. Sharma M, Wasan A, Sharma RK. Recent developments in probiotics: an emphasis on
4. Kelly SM, Munoz-Munoz J, van Sinderen D. Plant glycan metabolism by Bifidobacteria. Front Microbiol 2021;12:609418.
5. Sakanaka M, Gotoh A, Yoshida K, et al. Varied pathways of infant gut-associated
6. Sakanaka M, Hansen ME, Gotoh A, et al. Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis. Sci Adv 2019;5:eaaw7696.
7. Martinez FA, Balciunas EM, Converti A, Cotter PD, de Souza Oliveira RP. Bacteriocin production by
8. Zavaglia A, Kociubinski G, Pérez P, Disalvo E, De Antoni G. Effect of bile on the lipid composition and surface properties of bifidobacteria. J Appl Microbiol 2002;93:794-9.
9. Mawatari S, Sasuga Y, Morisaki T, et al. Identification of plasmalogens in
10. Fontes AL, Pimentel L, Rodríguez-Alcalá LM, Gomes A. Effect of pufa substrates on fatty acid profile of
11. Liu S, Ren F, Jiang J, Zhao L. Acid response of
12. O'Connell KJ, Motherway MO, Hennessey AA, et al. Identification and characterization of an oleate hydratase-encoding gene from
13. Veerkamp JH. Fatty acid composition of
14. Argudín M, Mendoza MC, Rodicio MR. Food poisoning and
15. Geoghegan JA, Irvine AD, Foster TJ.
16. McClelland RS, Fowler VG, Jr. , Sanders LL, et al.
17. Miyano T, Irvine AD, Tanaka RJ. Model-based meta-analysis to optimize
18. Kobayashi T, Glatz M, Horiuchi K, et al. Dysbiosis and
19. Kong HH, Oh J, Deming C, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 2012;22:850-9.
20. Iwamoto K, Moriwaki M, Miyake R, Hide M.
21. Cogen AL, Yamasaki K, Sanchez KM, et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from
22. Iwase T, Uehara Y, Shinji H, et al.
23. Lai Y, Cogen AL, Radek KA, et al. Activation of TLR2 by a small molecule produced by
24. Lai Y, Di Nardo A, Nakatsuji T, et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med 2009;15:1377-82.
25. Peng G, Tsukamoto S, Ikutama R, et al. Human β-defensin-3 attenuates atopic dermatitis-like inflammation through autophagy activation and the aryl hydrocarbon receptor signaling pathway. J Clin Invest 2022:132.
26. Jang IT, Yang M, Kim HJ, Park JK. Novel cytoplasmic bacteriocin compounds derived from
27. Nakatsuji T, Chen TH, Narala S, et al. Antimicrobials from human skin commensal bacteria protect against
28. Cartron ML, England SR, Chiriac AI, et al. Bactericidal activity of the human skin fatty acid cis-6-hexadecanoic acid on
29. Kenny JG, Ward D, Josefsson E, et al. The
30. Neumann Y, Ohlsen K, Donat S, et al. The effect of skin fatty acids on
31. Watanabe T, Yamamoto Y, Miura M, et al. Systematic analysis of selective bactericidal activity of fatty acids against
32. Schäfer L, Kragballe K. Abnormalities in epidermal lipid metabolism in patients with atopic dermatitis. J Invest Dermatol 1991;96:10-5.
33. Takigawa H, Nakagawa H, Kuzukawa M, Mori H, Imokawa G. Deficient production of hexadecenoic acid in the skin is associated in part with the vulnerability of atopic dermatitis patients to colonization by
34. Kikukawa H, Sakuradani E, Ando A, et al. Microbial production of dihomo-γ-linolenic acid by
35. Kikukawa H, Sakuradani E, Kishino S, et al. Characterization of a trifunctional fatty acid desaturase from oleaginous filamentous fungus
36. Kikukawa H, Shimizu C, Hirono-Hara Y, Hara KY. Screening of plant oils promoting growth of the red yeast
37. Takashima S, Toyoshi K, Yamamoto T, Shimozawa N. Positional determination of the carbon-carbon double bonds in unsaturated fatty acids mediated by solvent plasmatization using LC-MS. Sci Rep 2020;10:12988.
38. Mori T, Yoshida M, Hazekawa M, et al. Antimicrobial activities of LL-37 fragment mutant-poly (lactic-co-glycolic) acid conjugate against
39. Fujita Y, Matsuoka H, Hirooka K. Regulation of fatty acid metabolism in bacteria. Mol Microbiol 2007;66:829-39.
40. Nagao T, Watanabe Y, Hiraoka K, et al. Microbial conversion of vegetable oil to rare unsaturated fatty acids and fatty alcohols by an
41. Guerzoni ME, Lanciotti R, Cocconcelli PS. Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in
42. Rozès N, Peres C. Effects of phenolic compounds on the growth and the fatty acid composition of
43. Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 2010;85:1629-42.
44. Parsons JB, Yao J, Frank MW, Jackson P, Rock CO. Membrane disruption by antimicrobial fatty acids releases low-molecular-weight proteins from
45. Tiwari KB, Gatto C, Wilkinson BJ. Plasticity of coagulase-negative staphylococcal membrane fatty acid composition and implications for responses to antimicrobial agents. Antibiotics 2020;9:214.
46. Nagao T, Tanaka S, Yamashita K, et al. Methods of production of lipids and fatty acids, and the fatty acid compositions; 0. Japanese Patent; 2020. Available from: https://www.j-platpat.inpit.go.jp/c1800/PU/JP-2020-005614/451E2C19D56321EF3C3A3B19680D315C98390CD272BDB07915F3D07699BAB143/11/ja[Last accessed on 16 Feb 2023].
47. Okukawa M, Yoshizaki Y, Yano S, Nonomura Y. The selective antibacterial activity of the mixed systems containing myristic acid against staphylococci. J Oleo Sci 2021;70:1239-46.
48. Cau L, Williams MR, Butcher AM, et al.
49. Nagao T, Uyama A, Sugino T, Tanaka S, Kishimoto N. Control of skin microbiota with fatty acids: Rethinking the removal of “all” skin microorganisms. Available from: https://www.aocs.org/documents/InformPDF/INFORM_January_2020.pdf[Last accessed on 16 Feb 2023].