REFERENCES
1. Human microbiome project consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207-14.
3. Brüssow H. Problems with the concept of gut microbiota dysbiosis. Microb Biotechnol 2020;13:423-34.
4. Popper K Conjectures and refutations. The growth of scientific knowledge. Available from: https://books.google.com.hk/books/about/Conjectures_and_Refutations.html?id=IENmxiVBaSoC&redir_esc=y [Last accessed on 24 Mar 2023].
5. Subramanian S, Huq S, Yatsunenko T, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 2014;510:417-21.
6. Raman AS, Gehrig JL, Venkatesh S, et al. A sparse covarying unit that describes healthy and impaired human gut microbiota development. Science 2019;365:eaau4735.
7. Gehrig JL, Venkatesh S, Chang HW, et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 2019;365:eaau4732.
8. Chen RY, Mostafa I, Hibberd MC, et al. A microbiota-directed food intervention for undernourished children. N Engl J Med 2021;384:1517-28.
9. Vatanen T, Ang QY, Siegwald L, et al. A distinct clade of bifidobacterium longum in the gut of bangladeshi children thrives during weaning. Cell 2022;185:4280-4297.e12.
10. . A microbiota-directed food intervention for undernourished children. N Engl J Med 2022;386:1483-4.
11. Choudhury N, Ahmed T, Hossain MI, et al. Ready-to-use therapeutic food made from locally available food ingredients is well accepted by children having severe acute malnutrition in bangladesh. Food Nutr Bull 2018;39:116-26.
12. Lenters LM, Wazny K, Webb P, Ahmed T, Bhutta ZA. Treatment of severe and moderate acute malnutrition in low- and middle-income settings: a systematic review, meta-analysis and Delphi process. BMC Public Health 2013;13 Suppl 3:S23.
13. Sultana S, Sarker SA, Brüssow H. What happened to Koch's postulates in diarrhoea? Environ Microbiol 2017;19:2926-34.
15. Gough E, Shaikh H, Manges AR. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis 2011;53:994-1002.
16. Lee CH, Steiner T, Petrof EO, et al. Frozen
17. Kelly CR, Khoruts A, Staley C, et al. Effect of fecal microbiota transplantation on recurrence in multiply recurrent clostridium difficile infection: a randomized trial. Ann Intern Med 2016;165:609-16.
18. Ott SJ, Waetzig GH, Rehman A, et al. Efficacy of sterile fecal filtrate transfer for treating patients with clostridium difficile infection. Gastroenterology 2017;152:799-811.e7.
19. Li K, Yang J, Zhou X, et al. The mechanism of important components in canine fecal microbiota transplantation. Vet Sci 2022;9:695.
20. Zuo T, Wong SH, Lam K, et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut 2018;67:634-43.
21. Smith AB, Jenior ML, Keenan O, et al. Enterococci enhance clostridioides difficile pathogenesis. Nature 2022;611:780-6.
22. Gerding, D. N., Johnson, S. Clostridium difficile infection, including pseudomembraneous colitis. Available from: https://accessmedicine.mhmedical.com/content.aspx?bookid=2129§ionid=186949817 [Last accessed on 23 Mar 2023].
23. Moayyedi P, Surette MG, Kim PT, et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 2015;149:102-109.e6.
24. Rossen NG, Fuentes S, van der Spek MJ, et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 2015;149:110-118.e4.
25. Paramsothy S, Kamm MA, Kaakoush NO, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 2017;389:1218-28.
26. Costello SP, Hughes PA, Waters O, et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA 2019;321:156-64.
27. Caruso R, Lo BC, Núñez G. Host-microbiota interactions in inflammatory bowel disease. Nat Rev Immunol 2020;20:411-26.
28. Vaughn BP, Vatanen T, Allegretti JR, et al. Increased intestinal microbial diversity following fecal microbiota transplant for active Crohn's disease. Inflamm Bowel Dis 2016;22:2182-90.
29. Brüssow H. Turning the inside out: the microbiology of atopic dermatitis. Environ Microbiol 2016;18:2089-102.
30. Sharif S, Meader N, Oddie SJ, Rojas-Reyes MX, McGuire W. Probiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. Cochrane Database Syst Rev 2020;10:CD005496.
31. Sharif S, Heath PT, Oddie SJ, McGuire W. Synbiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. Cochrane Database Syst Rev 2022;3:CD014067.
32. Panigrahi P, Parida S, Nanda NC, et al. A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 2017;548:407-12.
33. Makrgeorgou A, Leonardi-Bee J, Bath-Hextall FJ, et al. Probiotics for treating eczema. Cochrane Database Syst Rev 2018;11:CD006135.
34. Voigt J, Lele M. Lactobacillus rhamnosus Used in the perinatal period for the prevention of atopic dermatitis in infants: a systematic review and meta-analysis of randomized trials. Am J Clin Dermatol 2022;23:801-11.
35. Norman JM, Handley SA, Baldridge MT, et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 2015;160:447-60.
36. Lee CZ, Zoqratt MZHM, Phipps ME, et al. The gut virome in two indigenous populations from Malaysia. Sci Rep 2022;12:1824.
37. Garretto A, Miller-Ensminger T, Wolfe AJ, Putonti C. Bacteriophages of the lower urinary tract. Nat Rev Urol 2019;16:422-32.
38. Zuo T, Lu XJ, Zhang Y, et al. Gut mucosal virome alterations in ulcerative colitis. Gut 2019;68:1169-79.
39. Gogokhia L, Buhrke K, Bell R, et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 2019;25:285-299.e8.
40. Clooney AG, Sutton TDS, Shkoporov AN, et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 2019;26:764-778.e5.
41. Moreno-Gallego JL, Chou SP, Di Rienzi SC, et al. Virome diversity correlates with intestinal microbiome diversity in adult monozygotic twins. Cell Host Microbe 2019;25:261-272.e5.
42. Furuse K, Osawa S, Kawashiro J, et al. Bacteriophage distribution in human faeces: continuous survey of healthy subjects and patients with internal and leukaemic diseases. J Gen Virol 1983;64:2039-43.
43. Chibani-Chennoufi S, Sidoti J, Bruttin A, et al. Isolation of escherichia coli bacteriophages from the stool of pediatric diarrhea patients in bangladesh. J Bacteriol 2004;186:8287-94.
44. Mathieu A, Dion M, Deng L, et al. Virulent coliphages in 1-year-old children fecal samples are fewer, but more infectious than temperate coliphages. Nat Commun 2020;11:378.
45. Schubbert R, Renz D, Schmitz B, Doerfler W. Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA. Proc Natl Acad Sci U S A 1997;94:961-6.
46. Bach MS, de Vries CR, Khosravi A, et al. Filamentous bacteriophage delays healing of pseudomonas-infected wounds. Cell Rep Med 2022;3:100656.
47. Sweere JM, Van Belleghem JD, Ishak H, et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 2019:363.
48. Merril CR, Geier MR, Petricciani JC. Bacterial virus gene expression in human cells. Nature 1971;233:398-400.
49. Carrera MR, Kaufmann GF, Mee JM, Meijler MM, Koob GF, Janda KD. Treating cocaine addiction with viruses. Proc Natl Acad Sci U S A 2004;101:10416-21.
50. Popescu M, Van Belleghem JD, Khosravi A, Bollyky PL. Bacteriophages and the immune system. Annu Rev Virol 2021;8:415-35.
52. Barr JJ, Auro R, Furlan M, et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci U S A 2013;110:10771-6.
53. Nguyen S, Baker K, Padman BS, et al. Bacteriophage Transcytosis Provides a Mechanism To Cross Epithelial Cell Layers. mBio 2017;8.
54. Górski A, Międzybrodzki R, Borysowski J, et al. Phage as a modulator of immune responses: practical implications for phage therapy. Adv Virus Res ;83:41-71.
55. Brüssow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 2004;68:560-602, table of contents.
56. Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H. Prophage genomics. Microbiol Mol Biol Rev 2003;67:238-76, table of contents.
57. Brüssow H. Bacteria between protists and phages: from antipredation strategies to the evolution of pathogenicity. Mol Microbiol 2007;65:583-9.
58. Enault F, Briet A, Bouteille L, Roux S, Sullivan MB, Petit MA. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME J 2017;11:237-47.
59. Moon K, Jeon JH, Kang I, et al. Freshwater viral metagenome reveals novel and functional phage-borne antibiotic resistance genes. Microbiome 2020;8:75.
60. Blanco-Picazo P, Morales-Cortes S, Ramos-Barbero MD, García-Aljaro C, Rodríguez-Rubio L, Muniesa M. Dominance of phage particles carrying antibiotic resistance genes in the viromes of retail food sources. ISME J 2023;17:195-203.
61. Chen J, Quiles-Puchalt N, Chiang YN, et al. Genome hypermobility by lateral transduction. Science 2018;362:207-12.
62. Fillol-Salom A, Bacigalupe R, Humphrey S, Chiang YN, Chen J, Penadés JR. Lateral transduction is inherent to the life cycle of the archetypical salmonella phage P22. Nat Commun 2021;12:6510.
63. Sulakvelidze A, Alavidze Z, Morris JG Jr. Bacteriophage therapy. Antimicrob Agents Chemother 2001;45:649-59.
64. Sarker SA, Sultana S, Reuteler G, et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from bangladesh. EBioMedicine 2016;4:124-37.
65. Leitner L, Ujmajuridze A, Chanishvili N, et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. Lancet Infect Dis 2021;21:427-36.
66. Jault P, Leclerc T, Jennes S, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by pseudomonas aeruginosa: a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis 2019;19:35-45.
67. Wright A, Hawkins CH, Anggård EE, Harper DR. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 2009;34:349-57.
68. Aslam S, Lampley E, Wooten D, et al. Lessons learned from the first 10 consecutive cases of intravenous bacteriophage therapy to treat multidrug-resistant bacterial infections at a single center in the united states. Open Forum Infect Dis 2020;7:ofaa389.
69. Dedrick RM, Smith BE, Cristinziano M, et al. Phage therapy of mycobacterium infections: compassionate use of phages in 20 patients with drug-resistant mycobacterial disease. Clin Infect Dis 2023;76:103-12.
70. Doub JB, Johnson AJ, Nandi S, et al. Experience using adjuvant bacteriophage therapy for the treatment of 10 recalcitrant periprosthetic joint infections: a case series. Clin Infect Dis 2023;76:e1463-6.
71. Fabijan A, Lin RCY, Ho J, Maddocks S, Ben Zakour NL, Iredell JR; Westmead bacteriophage therapy team. safety of bacteriophage therapy in severe staphylococcus aureus infection. Nat Microbiol 2020;5:465-72.
72. Eskenazi A, Lood C, Wubbolts J, et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nat Commun 2022;13:302.
73. Dedrick RM, Guerrero-Bustamante CA, Garlena RA, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 2019;25:730-3.
74. Friman VP, Soanes-Brown D, Sierocinski P, et al. Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosa cystic fibrosis bacterial isolates. J Evol Biol 2016;29:188-98.
75. Dunne M, Prokhorov NS, Loessner MJ, Leiman PG. Reprogramming bacteriophage host range: design principles and strategies for engineering receptor binding proteins. Curr Opin Biotechnol 2021;68:272-81.
76. Federici S, Kredo-Russo S, Valdés-Mas R, et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell 2022;185:2879-2898.e24.
77. Atarashi K, Suda W, Luo C, et al. Ectopic colonization of oral bacteria in the intestine drives T(H)1 cell induction and inflammation. Science 2017;358:359-65.
79. Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007;315:1709-12.
80. Al-Shayeb B, Skopintsev P, Soczek KM, et al. Diverse virus-encoded CRISPR-cas systems include streamlined genome editors. Cell 2022;185:4574-4586.e16.
81. Leavitt A, Yirmiya E, Amitai G, et al. Viruses inhibit TIR gcADPR signalling to overcome bacterial defence. Nature 2022;611:326-31.
82. Jebb D, Huang Z, Pippel M, et al. Six reference-quality genomes reveal evolution of bat adaptations. Nature 2020;583:578-84.
83. Tisza MJ, Pastrana DV, Welch NL, et al. Discovery of several thousand highly diverse circular DNA viruses. Elife 2020:9.
84. Kaczorowska J, van der Hoek L. Human anelloviruses: diverse, omnipresent and commensal members of the virome. FEMS Microbiol Rev 2020;44:305-13.
86. Cuicchi D, Gabrielli L, Tardio ML, et al. Virological and histological evaluation of intestinal samples in COVID-19 patients. World J Gastroenterol 2022;28:6282-93.
87. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020;581:465-9.
89. Bowes DA, Driver EM, Kraberger S, et al. Leveraging an established neighbourhood-level, open access wastewater monitoring network to address public health priorities: a population-based study. Lancet Microbe 2023;4:e29-37.
90. Peccia J, Zulli A, Brackney DE, et al. Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nat Biotechnol 2020;38:1164-7.