REFERENCES
1. Prazmowski A. Untersuchungen über die entwickelungsgeschichte und fermentwirkung einiger bacterien-arten. Available from: https://gdz.sub.uni-goettingen.de/id/PPN1030662479 [Last accessed on 17 Apr 2023].
2. Rainey FA, Hollen BJ, Small AM. Clostridium. In: Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J, Devos P, Hedlund B, Dedysh S, editors. Bergey’s manual of systematics of archaea and bacteria. Wiley; 2015. pp. 1-122.
3. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020;70:5607-12.
4. Dworkin M. The prokaryotes: a handbook on the biology of bacteria. Available from: https://link.springer.com/book/9780387254999 [Last accessed on 17 Apr 2023].
5. Béchon N, Ghigo JM. Gut biofilms: Bacteroides as model symbionts to study biofilm formation by intestinal anaerobes. FEMS Microbiol Rev 2022;46:fuab054.
6. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 2009;294:1-8.
7. Guo P, Zhang K, Ma X, He P. Clostridium species as probiotics: potentials and challenges. J Anim Sci Biotechnol 2020;11:24.
8. Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A. Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog 2013;5:23.
9. Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TM, Comelli EM. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes 2014;4:e121.
10. Amaretti A, Gozzoli C, Simone M, et al. Profiling of protein degraders in cultures of human gut microbiota. Front Microbiol 2019;10:2614.
11. Raimondi S, Calvini R, Candeliere F, et al. Multivariate analysis in microbiome description: correlation of human gut protein degraders, metabolites, and predicted metabolic functions. Front Microbiol 2021;12:723479.
12. Kamada N, Seo SU, Chen GY, Núñez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 2013;13:321-35.
13. Tanoue T, Atarashi K, Honda K. Development and maintenance of intestinal regulatory T cells. Nat Rev Immunol 2016;16:295-309.
14. Nagano Y, Itoh K, Honda K. The induction of Treg cells by gut-indigenous Clostridium. Curr Opin Immunol 2012;24:392-7.
15. Johnson JL, Francis BS. Taxonomy of the Clostridia: ribosomal ribonucleic acid homologies among the species. J Gen Microbiol 1975;88:229-44.
16. Collins MD, Lawson PA, Willems A, et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994;44:812-26.
17. Yutin N, Galperin MY. A genomic update on clostridial phylogeny: gram-negative spore formers and other misplaced clostridia. Environ Microbiol 2013;15:2631-41.
18. Lawson PA. The taxonomy of the genus Clostridium: current status and future perspectives. Available from: https://wswxtb.ijournals.cn/html/wswxtbcn/2016/5/tb16051070.htm [Last accessed on 17 Apr 2023].
19. Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 1977;74:5088-90.
20. Lawson PA, Rainey FA. Proposal to restrict the genus Clostridium Prazmowski to Clostridium butyricum and related species. Int J Syst Evol Microbiol 2016;66:1009-16.
21. Rossi-Tamisier M, Benamar S, Raoult D, Fournier PE. Cautionary tale of using 16S rRNA gene sequence similarity values in identification of human-associated bacterial species. Int J Syst Evol Microbiol 2015;65:1929-34.
22. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126-31.
23. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014;64:316-24.
24. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Available from: https://www.researchgate.net/profile/Luis-Rodriguez-R/publication/304587401_Bypassing_Cultivation_To_Identify_Bacterial_Species_Culture-independent_genomic_approaches_identify_credibly_distinct_clusters_avoid_cultivation_bias_and_provide_true_insights_into_microbial_species/links/58c18324aca272e36dcc8314/Bypassing-Cultivation-To-Identify-Bacterial-Species-Culture-independent-genomic-approaches-identify-credibly-distinct-clusters-avoid-cultivation-bias-and-provide-true-insights-into-microbial-species.pdf [Last accessed on 17 Apr 2023].
25. Pérez-Cataluña A, Salas-Massó N, Diéguez AL, et al. Revisiting the taxonomy of the genus arcobacter: getting order from the chaos. Front Microbiol 2018;9:2077.
26. Orata FD, Meier-Kolthoff JP, Sauvageau D, Stein LY. Phylogenomic analysis of the gammaproteobacterial methanotrophs (order methylococcales) calls for the reclassification of members at the genus and species levels. Front Microbiol 2018;9:3162.
27. Stott CM, Bobay LM. Impact of homologous recombination on core genome phylogenies. BMC Genomics 2020;21:829.
28. Gophna U, Konikoff T, Nielsen HB. Oscillospira and related bacteria - from metagenomic species to metabolic features. Environ Microbiol 2017;19:835-41.
29. Cruz-Morales P, Orellana CA, Moutafis G, et al. Revisiting the evolution and taxonomy of clostridia, a phylogenomic update. Genome Biol Evol 2019;11:2035-44.
30. Mukherjee A, Lordan C, Ross RP, Cotter PD. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes 2020;12:1802866.
31. Waters JL, Ley RE. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol 2019;17:83.
32. Meehan CJ, Beiko RG. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol 2014;6:703-13.
33. Sorbara MT, Littmann ER, Fontana E, et al. Functional and genomic variation between human-derived isolates of lachnospiraceae reveals inter- and intra-species diversity. Cell Host Microbe 2020;28:134-146.e4.
34. Galperin MY, Brover V, Tolstoy I, Yutin N. Phylogenomic analysis of the family Peptostreptococcaceae (Clostridium cluster XI) and proposal for reclassification of Clostridium litorale (Fendrich et al. 1991) and Eubacterium acidaminophilum (Zindel et al. 1989) as Peptoclostridium litorale gen. nov. comb. nov. and Peptoclostridium acidaminophilum comb. nov. Int J Syst Evol Microbiol 2016;66:5506-13.
35. Biddle A, Stewart L, Blanchard J, Leschine S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity 2013;5:627-40.
36. Whelan S, Morrison DA. Inferring trees. In: Keith JM, editor. Bioinformatics. New York: Springer; 2017. pp. 349-77.
37. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature 2007;449:804-10.
38. Lloyd-Price J, Mahurkar A, Rahnavard G, et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 2017;550:61-6.
39. Truong DT, Franzosa EA, Tickle TL, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 2015;12:902-3.
40. Beghini F, McIver LJ, Blanco-Míguez A, et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife 2021:10.
41. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 2019;37:852-7.
42. Kabeerdoss J, Sankaran V, Pugazhendhi S, Ramakrishna BS. Clostridium leptum group bacteria abundance and diversity in the fecal microbiota of patients with inflammatory bowel disease: a case-control study in India. BMC Gastroenterol 2013;13:20.
43. Raimondi S, Musmeci E, Candeliere F, Amaretti A, Rossi M. Identification of mucin degraders of the human gut microbiota. Sci Rep 2021;11:11094.
44. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016:4, e1900v1.
46. Page AJ, Cummins CA, Hunt M, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015;31:3691-3.
47. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312-3.
48. Garcia-Vallvé S, Palau J, Romeu A. Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtilis. Mol Biol Evol 1999;16:1125-34.
49. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021;49:W293-6.
50. Huson DH, and Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006;23:254-67.
51. Bandelt HJ, Dress AW. Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Mol Phylogenet Evol 1992;1:242-52.
52. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016;14:e1002533.
53. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017;11:2399-406.
54. Vandeputte D, Kathagen G, D'hoe K, et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 2017;551:507-11.
55. Candeliere F, Raimondi S, Ranieri R, et al. β-glucuronidase pattern predicted from gut metagenomes indicates potentially diversified pharmacomicrobiomics. Front Microbiol 2022;13:826994.
56. Cassir N, Benamar S, La Scola B. Clostridium butyricum: from beneficial to a new emerging pathogen. Clin Microbiol Infect 2016;22:37-45.
57. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 2019;20:257.
58. Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 2008;105:16731-6.
59. Sang J, Zhuang D, Zhang T, Wu Q, Yu J, Zhang Z. Convergent and divergent age patterning of gut microbiota diversity in humans and nonhuman primates. mSystems 2022;7:e0151221.
60. Zeevi D, Korem T, Godneva A, et al. Structural variation in the gut microbiome associates with host health. Nature 2019;568:43-8.
61. Zhou P, Yang D, Sun D, Zhou Y. Gut microbiome: new biomarkers in early screening of colorectal cancer. J Clin Lab Anal 2022;36:e24359.
62. Karcher N, Pasolli E, Asnicar F, et al. Analysis of 1321 Eubacterium rectale genomes from metagenomes uncovers complex phylogeographic population structure and subspecies functional adaptations. Genome Biol 2020;21:138.
63. Molino S, Lerma-Aguilera A, Jiménez-Hernández N, Rufián Henares JÁ, Francino MP. Evaluation of the Effects of a Short Supplementation With Tannins on the Gut Microbiota of Healthy Subjects. Front Microbiol 2022;13:848611.
64. Sánchez-Tapia M, Hernández-Velázquez I, Pichardo-Ontiveros E, et al. Consumption of cooked black beans stimulates a cluster of some clostridia class bacteria decreasing inflammatory response and improving insulin sensitivity. Nutrients 2020;12:1182.
65. Cann I, Bernardi RC, Mackie RI. Cellulose degradation in the human gut: ruminococcus champanellensis expands the cellulosome paradigm. Environ Microbiol 2016;18:307-10.
66. Alfa MJ, Robson D, Davi M, Bernard K, Van Caeseele P, Harding GK. An outbreak of necrotizing enterocolitis associated with a novel clostridium species in a neonatal intensive care unit. Clin Infect Dis 2002;35:S101-5.
67. Bouvet P, Ferraris L, Dauphin B, Popoff MR, Butel MJ, Aires J. 16S rRNA gene sequencing, multilocus sequence analysis, and mass spectrometry identification of the proposed new species “Clostridium neonatale”. J Clin Microbiol 2014;52:4129-36.