REFERENCES
1. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol 2016;16:341-52.
2. Power SE, O’Toole PW, Stanton C, Ross RP, Fitzgerald GF. Intestinal microbiota, diet and health. Br J Nutr 2014;111:387-402.
3. Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 2021;19:55-71.
4. Sun P, Su L, Zhu H, et al. Gut Microbiota regulation and their implication in the development of neurodegenerative disease. Microorganisms 2021;9:2281.
5. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 2015;26:26191.
6. Vangay P, Ward T, Gerber JS, Knights D. Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe 2015;17:553-64.
7. Wild CP. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev 2005;14:1847-50.
8. Brüssow H. Problems with the concept of gut microbiota dysbiosis. Microb Biotechnol 2020;13:423-34.
9. Koh A, Bäckhed F. From association to causality: the role of the gut microbiota and its functional products on host metabolism. Mol Cell 2020;78:584-96.
10. Lacroix C, de Wouters T, Chassard C. Integrated multi-scale strategies to investigate nutritional compounds and their effect on the gut microbiota. Curr Opin Biotechnol 2015;32:149-55.
11. Pham VT, Mohajeri MH. The application of in vitro human intestinal models on the screening and development of pre- and probiotics. Benef Microbes 2018;9:725-42.
12. Veintimilla-gozalbo E, Asensio-grau A, Calvo-lerma J, Heredia A, Andrés A. In vitro simulation of human colonic fermentation: a practical approach towards models’ design and analytical tools. Applied Sciences 2021;11:8135.
13. van de Steeg E, Schuren FHJ, Obach RS, et al. An ex vivo fermentation screening platform to study drug metabolism by human gut microbiota. Drug Metab Dispos 2018;46:1596-607.
14. Roupar D, Coelho MC, Gonçalves DA, et al. Evaluation of microbial-fructo-oligosaccharides metabolism by human gut microbiota fermentation as compared to commercial inulin-derived oligosaccharides. Foods 2022;11:954.
15. Kastl AJ Jr, Terry NA, Wu GD, Albenberg LG. The structure and function of the human small intestinal microbiota: current understanding and future directions. Cell Mol Gastroenterol Hepatol 2020;9:33-45.
16. Ohland CL, Jobin C. Microbial activities and intestinal homeostasis: a delicate balance between health and disease. Cell Mol Gastroenterol Hepatol 2015;1:28-40.
17. Booijink CC, El-Aidy S, Rajilić-Stojanović M, et al. High temporal and inter-individual variation detected in the human ileal microbiota. Environ Microbiol 2010;12:3213-27.
18. Hewes SA, Wilson RL, Estes MK, Shroyer NF, Blutt SE, Grande-Allen KJ. In Vitro models of the small intestine: engineering challenges and engineering solutions. Tissue Eng Part B Rev 2020;26:313-26.
19. Stolaki M, Minekus M, Venema K, et al. Microbial communities in a dynamic in vitro model for the human ileum resemble the human ileal microbiota. FEMS Microbiol Ecol 2019;95:fiz096.
20. Cieplak T, Wiese M, Nielsen S, Van de Wiele T, van den Berg F, Nielsen DS. The smallest intestine (TSI) -a low volume in vitro model of the small intestine with increased throughput. FEMS Microbiol Lett 2018:365.
21. Akritidou T, Smet C, Akkermans S, et al. A protocol for the cultivation and monitoring of ileal gut microbiota surrogates. J Appl Microbiol 2022;133:1919-39.
22. Kheadr E, Zihler A, Dabour N, Lacroix C, Le Blay G, Fliss I. Study of the physicochemical and biological stability of pediocin PA-1 in the upper gastrointestinal tract conditions using a dynamic in vitro model. J Appl Microbiol 2010;109:54-64.
23. Fernandez B, Savard P, Fliss I. Survival and metabolic activity of pediocin producer pediococcus acidilactici ul5: its impact on intestinal microbiota and listeria monocytogenes in a model of the human terminal ileum. Microb Ecol 2016;72:931-42.
24. Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207-14.
25. Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 2020;28:724-740.e8.
26. Camarillo-Guerrero LF, Almeida A, Rangel-Pineros G, Finn RD, Lawley TD. Massive expansion of human gut bacteriophage diversity. Cell 2021;184:1098-1109.e9.
27. Chibani CM, Mahnert A, Borrel G, et al. Publisher correction: a catalogue of 1,167 genomes from the human gut archaeome. Nat Microbiol 2022;7:339.
28. Raimondi S, Amaretti A, Gozzoli C, et al. Longitudinal survey of fungi in the human gut: its profiling, phenotyping, and colonization. Front Microbiol 2019;10:1575.
29. Vemuri R, Shankar EM, Chieppa M, Eri R, Kavanagh K. Beyond just bacteria: functional biomes in the gut ecosystem including virome, mycobiome, archaeome and helminths. Microorganisms 2020;8:483.
31. Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 2014;38:996-1047.
32. Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol 2021:71.
33. Olsson LM, Boulund F, Nilsson S, et al. Dynamics of the normal gut microbiota: a longitudinal one-year population study in Sweden. Cell Host Microbe 2022;30:726-739.e3.
34. Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006;312:1355-9.
35. Tap J, Mondot S, Levenez F, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 2009;11:2574-84.
36. Coyte KZ, Rakoff-Nahoum S. Understanding competition and cooperation within the mammalian gut microbiome. Curr Biol 2019;29:R538-44.
37. Almeida A, Nayfach S, Boland M, et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol 2021;39:105-14.
38. Clavel T, Horz HP, Segata N, Vehreschild M. Next steps after 15 stimulating years of human gut microbiome research. Microb Biotechnol 2022;15:164-75.
39. Hoek MJAV, Merks RMH. Emergence of microbial diversity due to cross-feeding interactions in a spatial model of gut microbial metabolism. BMC Syst Biol 2017;11:56.
40. Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut 2022;71:1020-32.
41. Albenberg L, Esipova TV, Judge CP, et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 2014;147:1055-63.e8.
42. Singhal R, Shah YM. Oxygen battle in the gut: Hypoxia and hypoxia-inducible factors in metabolic and inflammatory responses in the intestine. J Biol Chem 2020;295:10493-505.
44. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 2017;19:29-41.
46. Rios-Covian D, González S, Nogacka AM, et al. An overview on fecal branched short-chain fatty acids along human life and as related with body mass index: associated dietary and anthropometric factors. Front Microbiol 2020;11:973.
48. Jian C, Luukkonen P, Yki-Järvinen H, Salonen A, Korpela K. Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling. PLoS One 2020;15:e0227285.
49. Liu YX, Qin Y, Chen T, et al. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell 2021;12:315-30.
50. Hillmann B, Al-Ghalith GA, Shields-Cutler RR, et al. Evaluating the information content of shallow shotgun metagenomics. mSystems 2018:3.
51. Laudadio I, Fulci V, Palone F, Stronati L, Cucchiara S, Carissimi C. Quantitative assessment of shotgun metagenomics and 16S rDNA amplicon sequencing in the study of human gut microbiome. OMICS 2018;22:248-54.
52. Mailhe M, Ricaboni D, Vitton V, et al. Repertoire of the gut microbiota from stomach to colon using culturomics and next-generation sequencing. BMC Microbiol 2018;18:157.
53. Vuik F, Dicksved J, Lam SY, et al. Composition of the mucosa-associated microbiota along the entire gastrointestinal tract of human individuals. United European Gastroenterol J 2019;7:897-907.
54. Bircher L, Schwab C, Geirnaert A, Greppi A, Lacroix C. Planktonic and sessile artificial colonic microbiota harbor distinct composition and reestablish differently upon frozen and freeze-dried long-term storage. mSystems 2020:5.
55. Demuth T, Edwards V, Bircher L, Lacroix C, Nyström L, Geirnaert A. In vitro colon fermentation of soluble arabinoxylan is modified through milling and extrusion. Front Nutr 2021;8:707763.
56. Ramirez Garcia A, Zhang J, Greppi A, et al. Impact of manipulation of glycerol/diol dehydratase activity on intestinal microbiota ecology and metabolism. Environ Microbiol 2021;23:1765-79.
57. Aguirre M, Eck A, Koenen ME, Savelkoul PH, Budding AE, Venema K. Evaluation of an optimal preparation of human standardized fecal inocula for in vitro fermentation studies. J Microbiol Methods 2015;117:78-84.
58. Kerckhof FM, Courtens EN, Geirnaert A, et al. Optimized cryopreservation of mixed microbial communities for conserved functionality and diversity. PLoS One 2014;9:e99517.
59. Papanicolas LE, Choo JM, Wang Y, et al. Bacterial viability in faecal transplants: Which bacteria survive? EBioMedicine 2019;41:509-16.
60. Bircher L, Schwab C, Geirnaert A, Lacroix C. Cryopreservation of artificial gut microbiota produced with in vitro fermentation technology. Microb Biotechnol 2018;11:163-75.
61. Walker AW, Ince J, Duncan SH, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 2011;5:220-30.
62. Zmora N, Zilberman-Schapira G, Suez J, et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 2018;174:1388-1405.e21.
63. Hou Q, Zhao F, Liu W, et al. Probiotic-directed modulation of gut microbiota is basal microbiome dependent. Gut Microbes 2020;12:1736974.
64. Chen T, Long W, Zhang C, Liu S, Zhao L, Hamaker BR. Fiber-utilizing capacity varies in prevotella- versus bacteroides-dominated gut microbiota. Sci Rep 2017;7:2594.
65. Paepe K, Kerckhof FM, Verspreet J, Courtin CM, Van de Wiele T. Inter-individual differences determine the outcome of wheat bran colonization by the human gut microbiome. Environ Microbiol 2017;19:3251-67.
66. Isenring J, Stevens MJA, Jans C, Lacroix C, Geirnaert A. Identification of valerate as carrying capacity modulator by analyzing lactiplantibacillus plantarum colonization of colonic microbiota in vitro. Front Microbiol 2022;13:910609.
67. Poeker SA, Geirnaert A, Berchtold L, et al. Understanding the prebiotic potential of different dietary fibers using an in vitro continuous adult fermentation model (PolyFermS). Sci Rep 2018;8:4318.
68. An R, Wilms E, Logtenberg MJ, et al. In vitro metabolic capacity of carbohydrate degradation by intestinal microbiota of adults and pre-frail elderly. ISME COMMUN 2021:1.
69. Pérez-Burillo S, Molino S, Navajas-Porras B, et al. An in vitro batch fermentation protocol for studying the contribution of food to gut microbiota composition and functionality. Nat Protoc 2021;16:3186-209.
70. Payne AN, Zihler A, Chassard C, Lacroix C. Advances and perspectives in in vitro human gut fermentation modeling. Trends Biotechnol 2012;30:17-25.
71. Nissen L, Casciano F, Gianotti A. Intestinal fermentation in vitro models to study food-induced gut microbiota shift: an updated review. FEMS Microbiol Lett 2020;367:fnaa097.
72. Sanabria J, Egan S, Masuda R, et al. Overview of the nomenclature and network of contributors to the development of bioreactors for human gut simulation using bibliometric tools: a fragmented landscape. J Agric Food Chem 2022;70:11458-67.
73. De Boever, Roel Wouters, Va. Development of a six-stage culture system for simulating the gastrointestinal microbiota of weaned infants. Microbial Ecology in Health and Disease 2001;13:111-23.
74. Blay G, Chassard C, Baltzer S, Lacroix C. Set up of a new in vitro model to study dietary fructans fermentation in formula-fed babies. Br J Nutr 2010;103:403-11.
75. den Abbeele P, Duysburgh C, Vazquez E, Chow J, Buck R, Marzorati M. 2′-Fucosyllactose alters the composition and activity of gut microbiota from formula-fed infants receiving complementary feeding in a validated intestinal model. J. Funct Foods 2019;61:103484.
76. Doo EH, Chassard C, Schwab C, Lacroix C. Effect of dietary nucleosides and yeast extracts on composition and metabolic activity of infant gut microbiota in polyferms colonic fermentation models. FEMS Microbiol Ecol 2017:93.
77. Fournier E, Denis S, Dominicis A, et al. A child is not an adult: development of a new in vitro model of the toddler colon. Appl Microbiol Biotechnol 2022;106:7315-36.
78. Brodkorb A, Egger L, Alminger M, et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat Protoc 2019;14:991-1014.
79. Kleigrewe K, Haack M, Baudin M, et al. Dietary modulation of the human gut microbiota and metabolome with flaxseed preparations. Int J Mol Sci 2022;23:10473.
80. Pan L, Sun W, Shang Q, et al. In vitro fermentation and isolation of heparin-degrading bacteria from human gut microbiota. Anaerobe 2021;68:102289.
81. Valentová K, Havlík J, Kosina P, et al. Biotransformation of silymarin flavonolignans by human fecal microbiota. Metabolites 2020;10:29.
82. Li L, Ning Z, Zhang X, et al. RapidAIM: a culture- and metaproteomics-based Rapid Assay of Individual Microbiome responses to drugs. Microbiome 2020;8:33.
83. Li L, Abou-Samra E, Ning Z, et al. An in vitro model maintaining taxon-specific functional activities of the gut microbiome. Nat Commun 2019;10:4146.
84. Yao CK, Rotbart A, Ou JZ, Kalantar-Zadeh K, Muir JG, Gibson PR. Modulation of colonic hydrogen sulfide production by diet and mesalazine utilizing a novel gas-profiling technology. Gut Microbes 2018;9:510-22.
85. So D, Yao CK, Gill PA, Pillai N, Gibson PR, Muir JG. Screening dietary fibres for fermentation characteristics and metabolic profiles using a rapid in vitro approach: implications for irritable bowel syndrome. Br J Nutr 2021;126:208-18.
86. Fekry MI, Engels C, Zhang J, et al. The strict anaerobic gut microbe Eubacterium hallii transforms the carcinogenic dietary heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Environ Microbiol Rep 2016;8:201-9.
87. Macfarlane GT, Macfarlane S, Gibson GR. Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb Ecol 1998;35:180-7.
88. Molly K, Vande Woestyne M, Verstraete W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol 1993;39:254-8.
89. Gibson GR, Cummings JH, Macfarlane GT. Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl Environ Microbiol 1988;54:2750-5.
90. Zihler Berner A, Fuentes S, Dostal A, et al. Novel Polyfermentor intestinal model (PolyFermS) for controlled ecological studies: validation and effect of pH. PLoS One 2013;8:e77772.
91. Minekus M, Smeets-Peeters M, Bernalier A, et al. A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl Microbiol Biotechnol 1999;53:108-14.
92. Zihler A, Gagnon M, Chassard C, et al. Unexpected consequences of administering bacteriocinogenic probiotic strains for Salmonella populations, revealed by an in vitro colonic model of the child gut. Microbiology (Reading) 2010;156:3342-53.
93. Fehlbaum S, Chassard C, Haug MC, Fourmestraux C, Derrien M, Lacroix C. Design and investigation of polyferms in vitro continuous fermentation models inoculated with immobilized fecal microbiota mimicking the elderly colon. PLoS One 2015;10:e0142793.
94. García-Villalba R, Vissenaekens H, Pitart J, et al. Gastrointestinal simulation model twin-shime shows differences between human urolithin-metabotypes in gut microbiota composition, pomegranate polyphenol metabolism, and transport along the intestinal tract. J Agric Food Chem 2017;65:5480-93.
95. Van den Abbeele P, Roos S, Eeckhaut V, et al. Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb Biotechnol 2012;5:106-15.
96. Deschamps C, Fournier E, Uriot O, et al. Comparative methods for fecal sample storage to preserve gut microbial structure and function in an in vitro model of the human colon. Appl Microbiol Biotechnol 2020;104:10233-47.
97. McDonald JA, Fuentes S, Schroeter K, et al. Simulating distal gut mucosal and luminal communities using packed-column biofilm reactors and an in vitro chemostat model. J Microbiol Methods 2015;108:36-44.
98. Pham VT, Chassard C, Rifa E, et al. Lactate metabolism is strongly modulated by fecal inoculum, ph, and retention time in polyferms continuous colonic fermentation models mimicking young infant proximal colon. mSystems 2019:4.
99. Possemiers S, Verthé K, Uyttendaele S, Verstraete W. PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 2004;49:495-507.
100. Van den Abbeele P, Grootaert C, Marzorati M, et al. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl Environ Microbiol 2010;76:5237-46.
101. McDonald JA, Schroeter K, Fuentes S, et al. Evaluation of microbial community reproducibility, stability and composition in a human distal gut chemostat model. J Microbiol Methods 2013;95:167-74.
102. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol 2019;4:293-305.
103. Rodionov DA, Arzamasov AA, Khoroshkin MS, et al. Micronutrient requirements and sharing capabilities of the human gut microbiome. Front Microbiol 2019;10:1316.
104. den Abbeele P, Sprenger N, Ghyselinck J, Marsaux B, Marzorati M, Rochat F. A comparison of the in vitro effects of 2'fucosyllactose and lactose on the composition and activity of gut microbiota from infants and toddlers. Nutrients 2021;13:726.
105. Langille MG, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 2013;31:814-21.
106. Douglas GM, Maffei VJ, Zaneveld JR, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 2020;38:685-8.