REFERENCES

1. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016;14:e1002533.

2. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol 2015;21:8787-803.

3. Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006;312:1355-9.

4. Chung WSF, Walker AW, Vermeiren J, et al. Impact of carbohydrate substrate complexity on the diversity of the human colonic microbiota. FEMS Microbiol Ecol 2019;95:1.

5. Jones JM. CODEX-aligned dietary fiber definitions help to bridge the ‘fiber gap’. Nutr J 2014;13:34.

6. Russell WR, Hoyles L, Flint HJ, Dumas ME. Colonic bacterial metabolites and human health. Curr Opin Microbiol 2013;16:246-54.

7. Heiman ML, Greenway FL. A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol Metab 2016;5:317-20.

8. Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation within the gut microbiota. Nature 2016;533:255-9.

9. Bohnhoff M, Drake BL, Miller CP. Effect of streptomycin on susceptibility of intestinal tract to experimental salmonella infection. Proc Soc Exp Biol Med 1954;86:132-7.

10. Slimings C, Riley TV. Antibiotics and hospital-acquired clostridium difficile infection: update of systematic review and meta-analysis. J Antimicrob Chemother 2014;69:881-91.

11. Martinez-Medina M, Denizot J, Dreux N, et al. Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut 2014;63:116-24.

12. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016;529:212-5.

13. Desai MS, Seekatz AM, Koropatkin NM, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 2016;167:1339-1353.e21.

14. Hryckowian AJ, Van Treuren W, Smits SA, et al. Microbiota-accessible carbohydrates suppress clostridium difficile infection in a murine model. Nat Microbiol 2018;3:662-9.

15. Ebersbach T, Jørgensen JB, Heegaard PM, et al. Certain dietary carbohydrates promote listeria infection in a guinea pig model, while others prevent it. Int J Food Microbiol 2010;140:218-24.

16. Strain R. 2021. Novel insights into the influence of fibre and lipid substrates on the microbiome. A thesis presented to the National University of Ireland for the Degree of Doctor of Philosophy. University College Cork, Ireland. Available from: https://cora.ucc.ie/server/api/core/bitstreams/38efc6ff-b272-4c5b-9c02-b8b901fbf61a/content [Last accessed on 12 Jun 2023]

17. Minekus M, Alminger M, Alvito P, et al. A standardised static in vitro digestion method suitable for food - an international consensus. Food Funct 2014;5:1113-24.

18. O’Donnell MM, Rea MC, O’Sullivan Ó, et al. Preparation of a standardised faecal slurry for ex-vivo microbiota studies which reduces inter-individual donor bias. J Microbiol Methods 2016;129:109-16.

19. Fooks LJ, Gibson GR. Mixed culture fermentation studies on the effects of synbiotics on the human intestinal pathogens campylobacter jejuni and escherichia coli. Anaerobe 2003;9:231-42.

20. O’Donnell MM, Rea MC, Shanahan F, Ross RP. The use of a mini-bioreactor fermentation system as a reproducible, high-throughput ex vivo batch model of the distal colon. Front Microbiol 2018;9:1844.

21. Yu Z, Morrison M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 2004;36:808-12.

22. Klindworth A, Pruesse E, Schweer T, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 2013;41:e1.

23. Tran TTT, Corsini S, Kellingray L, et al. APOE genotype influences the gut microbiome structure and function in humans and mice: relevance for Alzheimer’s disease pathophysiology. FASEB J 2019;33:8221-31.

24. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 2012;13:134.

25. Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009;55:611-22.

26. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001;29:e45.

27. Cussotto S, Strain CR, Fouhy F, et al. Differential effects of psychotropic drugs on microbiome composition and gastrointestinal function. Psychopharmacology 2019;236:1671-85.

28. McRorie JW Jr. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 1: what to look for and how to recommend an effective fiber therapy. Nutr Today 2015;50:82-9.

29. Henrion M, Francey C, Lê KA, Lamothe L. Cereal B-Glucans: the impact of processing and how it affects physiological responses. Nutrients 2019;11:1729.

30. Yarza P, Yilmaz P, Pruesse E, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014;12:635-45.

31. Luo Y, Zhang L, Li H, et al. Different types of dietary fibers trigger specific alterations in composition and predicted functions of colonic bacterial communities in BALB/c mice. Front Microbiol 2017;8:966.

32. Tamura K, Hemsworth GR, Déjean G, et al. Molecular mechanism by which prominent human gut bacteroidetes utilize mixed-linkage beta-glucans, major health-promoting cereal polysaccharides. Cell Rep 2017;21:417-30.

33. Pereira FC, Berry D. Microbial nutrient niches in the gut. Environ Microbiol 2017;19:1366-78.

34. Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A. Commensal clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog 2013;5:23.

35. Dols M, Chraibi W, Remaud-Simeon M, Lindley ND, Monsan PF. Growth and energetics of leuconostoc mesenteroides NRRL B-1299 during metabolism of various sugars and their consequences for dextransucrase production. Appl Environ Microbiol 1997;63:2159-65.

36. Greetham HL, Collins MD, Gibson GR, Giffard C, Falsen E, Lawson PA. Sutterella stercoricanis sp. nov., isolated from canine faeces. Int J Syst Evol Microbiol 2004;54:1581-4.

37. Hiippala K, Kainulainen V, Kalliomäki M, Arkkila P, Satokari R. Mucosal prevalence and interactions with the epithelium indicate commensalism of sutterella spp. Front Microbiol 2016;7:1706.

38. Bukin YS, Galachyants YP, Morozov IV, Bukin SV, Zakharenko AS, Zemskaya TI. The effect of 16S rRNA region choice on bacterial community metabarcoding results. Sci Data 2019;6:190007.

39. Jacobson A, Lam L, Rajendram M, et al. A gut commensal-produced metabolite mediates colonization resistance to salmonella infection. Cell Host Microbe 2018;24:296-307.e7.

40. Hockenberry AM, Micali G, Takács G, Weng J, Hardt WD, Ackermann M. Microbiota-derived metabolites inhibit salmonella virulent subpopulation development by acting on single-cell behaviors. Proc Natl Acad Sci U S A 2021;118:e2103027118.

41. Wotzka SY, Kreuzer M, Maier L, et al. Escherichia coli limits salmonella typhimurium infections after diet shifts and fat-mediated microbiota perturbation in mice. Nat Microbiol 2019;4:2164-74.

42. Makki K, Deehan EC, Walter J, Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018;23:705-15.

43. Kodali S, Vinogradov E, Lin F, et al. A vaccine approach for the prevention of infections by multidrug-resistant enterococcus faecium. J Biol Chem 2015;290:19512-26.

44. Seong H, Lee SK, Cheon JH, et al. Fecal microbiota transplantation for multidrug-resistant organism: efficacy and response prediction. J Infect 2020;81:719-25.

45. Cossart P. Illuminating the landscape of host-pathogen interactions with the bacterium listeria monocytogenes. Proc Natl Acad Sci U S A 2011;108:19484-91.

46. Ruiz-Herrera J, Ortiz-Castellanos L. Cell wall glucans of fungi. A review. Cell Surf 2019;5:100022.

47. Becattini S, Littmann ER, Carter RA, et al. Commensal microbes provide first line defense against Listeria monocytogenes infection. J Exp Med 2017;214:1973-89.

48. Aguirre M, Ramiro-Garcia J, Koenen ME, Venema K. To pool or not to pool? Impact of the use of individual and pooled fecal samples for in vitro fermentation studies. J Microbiol Methods 2014;107:1-7.

49. Fletcher SM, McLaws ML, Ellis JT. Prevalence of gastrointestinal pathogens in developed and developing countries: systematic review and meta-analysis. J Public Health Res 2013;2:42-53.

50. Gannon VP, D’Souza S, Graham T, King RK, Rahn K, Read S. Use of the flagellar H7 gene as a target in multiplex PCR assays and improved specificity in identification of enterohemorrhagic escherichia coli strains. J Clin Microbiol 1997;35:656-62.

51. Shanmugasundaram M, Radhika M, Murali HS, Batra HV. Detection of salmonella enterica serovar typhimurium by selective amplification of fliC, fljB, iroB, invA, rfbJ, STM2755, STM4497 genes by polymerase chain reaction in a monoplex and multiplex format. World J Microbiol Biotechnol 2009;25:1385-94.

52. D’Agostino M, Wagner M, Vazquez-Boland JA, et al. A validated PCR-based method to detect listeria monocytogenes using raw milk as a food model - towards an international standard. J Food Prot 2004;67:1646-55.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/