REFERENCES
1. Zhernakova A, Kurilshikov A, Bonder MJ, et al. LifeLines Cohort Study. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 2016;352:565-9.
2. Burt SJ, Woods DR. R factor transfer to obligate anaerobes from Escherichia coli. J Gen Microbiol 1976;93:405-9.
3. Mancini C, Behme RJ. Transfer of multiple antibiotic resistance from Bacteroides fragilis to Escherichia coli. J Infect Dis 1977;136:597-600.
4. Burt SJ, Woods DR. Transfection of the Anaerobe Bacteroides thetaiotaomicron with Phage DNA. J Gen Microbiol 1977;103:181-7.
5. D’Elia JN, Salyers AA. Contribution of a neopullulanase, a pullulanase, and an alpha-glucosidase to growth of Bacteroides thetaiotaomicron on starch. J Bacteriol 1996;178:7173-9.
6. Martens EC, Lowe EC, Chiang H, et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol 2011;9:e1001221.
7. Luis AS, Briggs J, Zhang X, et al. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat Microbiol 2018;3:210-9.
8. Sieow BF, Wun KS, Yong WP, Hwang IY, Chang MW. Tweak to treat: reprograming Bacteria for cancer treatment. Trends Cancer 2021;7:447-464.
9. Wu J, Xin Y, Kong J, Guo T. Genetic tools for the development of recombinant lactic acid bacteria. Microb Cell Fact 2021;20:118.
10. Aminov RI, Walker AW, Duncan SH, Harmsen HJ, Welling GW, Flint HJ. Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale. Appl Environ Microbiol 2006;72:6371-6.
11. Rosero JA, Killer J, Sechovcová H, et al. Reclassification of Eubacterium rectale (Hauduroy et al. 1937) Prévot 1938 in a new genus Agathobacter gen. nov. as Agathobacter rectalis comb. nov., and description of Agathobacter ruminis sp. nov., isolated from the rumen contents of sheep and cows. Int J Syst Evol Microbiol 2016;66:768-73.
12. Sheridan PO, Duncan SH, Walker AW, Scott KP, Louis P, Flint HJ. Objections to the proposed reclassification of Eubacterium rectale as Agathobacter rectalis. Int J Syst Evol Microbiol 2016;66:2106.
13. O Sheridan P, Martin JC, Lawley TD, et al. Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes. Microb Genom 2016;2:e000043.
14. Zuo G, Hao B. Whole-genome-based phylogeny supports the objections against the reclassification of Eubacterium rectale to Agathobacter rectalis. Int J Syst Evol Microbiol 2016;66:2451.
15. Breuninger TA, Wawro N, Breuninger J, et al. Associations between habitual diet, metabolic disease, and the gut microbiota using latent Dirichlet allocation. Microbiome 2021;9:61.
16. Barbosa TM, Scott KP, Flint HJ. Evidence for recent intergeneric transfer of a new tetracycline resistance gene, tet(W), isolated from Butyrivibrio fibrisolvens, and the occurrence of tet(O) in ruminal bacteria. Environ Microbiol 1999;1:53-64.
17. Melville CM, Scott KP, Mercer DK, Flint HJ. Novel tetracycline resistance gene, tet(32), in the Clostridium-related human colonic anaerobe K10 and its transmission in vitro to the rumen anaerobe Butyrivibrio fibrisolvens. Antimicrob Agents Chemother 2001;45:3246-9.
18. Scott KP, Martin JC, Mrazek J, Flint HJ. Transfer of conjugative elements from rumen and human Firmicutes bacteria to Roseburia inulinivorans. Appl Environ Microbiol 2008;74:3915-7.
19. Sheridan PO, Martin JC, Minton NP, Flint HJ, O’Toole PW, Scott KP. Heterologous gene expression in the human gut bacteria Eubacterium rectale and Roseburia inulinivorans by means of conjugative plasmids. Anaerobe 2019;59:131-40.
20. Sheridan PO, Martin JC, Scott KP. Conjugation protocol optimised for Roseburia inulinivorans and Eubacterium rectale. Bio Protoc 2020;10:e3575.
21. Kullen MJ, Klaenhammer TR. Genetic modification of intestinal lactobacilli and bifidobacteria. Curr Issues Mol Biol 2000;2:41-50.
22. Ruiz L, Esteban-torres M, van Sinderen D. A resource for cloning and expression vectors designed for Bifidobacteria: overview of available tools and biotechnological applications. In: van Sinderen D, Ventura M, editors. Bifidobacteria. New York: Springer US; 2021. p. 157-82.
23. Arboleya S, Watkins C, Stanton C, Ross RP. Gut bifidobacteria populations in human health and aging. Front Microbiol 2016;7:1204.
24. O’Callaghan A, van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol 2016;7:925.
25. Dineen RL, Penno C, Kelleher P, Bourin MJB, O’Connell-Motherway M, van Sinderen D. Molecular analysis of the replication functions of the bifidobacterial conjugative megaplasmid pMP7017. Microb Biotechnol 2021;14:1494-511.
26. Zheng J, Wittouck S, Salvetti E, et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020;70:2782-858.
27. Yadav R, Kumar V, Baweja M, Shukla P. Gene editing and genetic engineering approaches for advanced probiotics: a review. Crit Rev Food Sci Nutr 2018;58:1735-46.
28. Cuív PÓ, Smith WJ, Pottenger S, Burman S, Shanahan ER, Morrison M. Isolation of genetically tractable most-wanted bacteria by metaparental mating. Sci Rep 2015;5:13282.
31. Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 2005;3:711-21.
32. Cohan FM, Roberts MS, King EC. The potential for genetic exchange by transformation within a natural population of bacillus subtilis. Evolution 1991;45:1393-421.
33. Chang S, Cohen SN. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet 1979;168:111-5.
36. Song Y, Hahn T, Thompson IP, et al. Ultrasound-mediated DNA transfer for bacteria. Nucleic Acids Res 2007;35:e129.
37. Shark KB, Smith FD, Harpending PR, Rasmussen JL, Sanford JC. Biolistic transformation of a procaryote, Bacillus megaterium. Appl Environ Microbiol 1991;57:480-5.
38. Elliott AR, Silvert PY, Xue GP, Simpson GD, Tekaia-Elhsissen K, Aylward JH. Transformation of Bacillus subtilis using the particle inflow gun and submicrometer particles obtained by the polyol process. Anal Biochem 1999;269:418-20.
39. Yoshida N, Ide K. Plasmid DNA is released from nanosized acicular material surface by low molecular weight oligonucleotides: exogenous plasmid acquisition mechanism for penetration intermediates based on the Yoshida effect. Appl Microbiol Biotechnol 2008;80:813-21.
40. Yoshida N, Sato M. Plasmid uptake by bacteria: a comparison of methods and efficiencies. Appl Microbiol Biotechnol 2009;83:791-8.
41. Salyers AA, Shoemaker NB, Stevens AM, Li LY. Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol Rev 1995;59:579-90.
42. Lee CA, Babic A, Grossman AD. Autonomous plasmid-like replication of a conjugative transposon. Mol Microbiol 2010;75:268-79.
43. te Poele EM, Bolhuis H, Dijkhuizen L. Actinomycete integrative and conjugative elements. Antonie Van Leeuwenhoek 2008;94:127-43.
44. Wang J, Wang GR, Shoemaker NB, Salyers AA. Production of two proteins encoded by the Bacteroides mobilizable transposon NBU1 correlates with time-dependent accumulation of the excised NBu1 circular form. J Bacteriol 2001;183:6335-43.
45. Clewell D, Flannagan S, Jaworski D, Clewell D. Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol 1995;3:229-36.
46. Scott KP. The role of conjugative transposons in spreading antibiotic resistance between bacteria that inhabit the gastrointestinal tract. Cell Mol Life Sci 2002;59:2071-82.
47. Haraldsen JD, Sonenshein AL. Efficient sporulation in Clostridium difficile requires disruption of the sigmaK gene. Mol Microbiol 2003;48:811-21.
48. Pelicic V, Reyrat JM, Gicquel B. Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. J Bacteriol 1996;178:1197-9.
49. Ried JL, Collmer A. An nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in Gram-negative bacteria by marker exchange-eviction mutagenesis. Gene 1987;57:239-46.
50. Schweizer HP. Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker. Mol Microbiol 1992;6:1195-204.
51. Wu SS, Kaiser D. Markerless deletions of pil genes in Myxococcus xanthus generated by counterselection with the Bacillus subtilis sacB gene. J Bacteriol 1996;178:5817-21.
52. Fabret C, Ehrlich SD, Noirot P. A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol Microbiol 2002;46:25-36.
53. Sakaguchi K, He J, Tani S, Kano Y, Suzuki T. A targeted gene knockout method using a newly constructed temperature-sensitive plasmid mediated homologous recombination in Bifidobacterium longum. Appl Microbiol Biotechnol 2012;95:499-509.
54. Casjens SR. The DNA-packaging nanomotor of tailed bacteriophages. Nat Rev Microbiol 2011;9:647-57.
55. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol 2010;8:317-27.
56. Goh S, Hussain H, Chang BJ, Emmett W, Riley TV, Mullany P. Phage ϕC2 mediates transduction of Tn6215, encoding erythromycin resistance, between Clostridium difficile strains. mBio 2013;4:e00840-13.
57. Löfblom J, Kronqvist N, Uhlén M, Ståhl S, Wernérus H. Optimization of electroporation-mediated transformation: staphylococcus carnosus as model organism. J Appl Microbiol 2007;102:736-47.
58. Bhattacharjee D, Sorg JA. Factors and conditions that impact electroporation of Clostridioides difficile strains. mSphere 2020;5:e00941-19.
59. Aukrust T, Blom H. Transformation of Lactobacillus strains used in meat and vegetable fermentations. Food Res Int 1992;25:253-61.
60. Buckley ND, Vadeboncoeur C, LeBlanc DJ, Lee LN, Frenette M. An effective strategy, applicable to Streptococcus salivarius and related bacteria, to enhance or confer electroporation competence. Appl Environ Microbiol 1999;65:3800-4.
61. Dunny GM, Lee LN, LeBlanc DJ. Improved electroporation and cloning vector system for gram-positive bacteria. Appl Environ Microbiol 1991;57:1194-201.
62. Holo H, Nes IF. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 1989;55:3119-23.
63. Sun Z, Baur A, Zhurina D, Yuan J, Riedel CU. Accessing the inaccessible: molecular tools for bifidobacteria. Appl Environ Microbiol 2012;78:5035-42.
64. Argnani A, Leer RJ, van Luijk N, Pouwels PH. A convenient and reproducible method to genetically transform bacteria of the genus Bifidobacterium. Microbiology 1996;142:109-14.
65. Serafini F, Turroni F, Guglielmetti S, et al. An efficient and reproducible method for transformation of genetically recalcitrant bifidobacteria. FEMS Microbiol Lett 2012;333:146-52.
66. Chai D, Wang G, Fang L, et al. The optimization system for preparation of TG1 competent cells and electrotransformation. Microbiologyopen 2020;9:e1043.
67. Huang PH, Chen S, Shiver AL, Culver RN, Huang KC, Buie CR. M-TUBE enables large-volume bacterial gene delivery using a high-throughput microfluidic electroporation platform. PLoS Biol 2022;20:e3001727.
68. Augustin J. Transformation of Staphylococcus epidermidis and other staphylococcal species with plasmid DNA by electroporation. FEMS Microbiol Lett 1990;66:203-7.
69. Schenk S. Improved method for electroporation of Staphylococcus aureus. FEMS Microbiol Lett 1992;94:133-8.
70. Tu Q, Yin J, Fu J, et al. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency. Sci Rep 2016;6:24648.
71. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983;166:557-80.
72. Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative Bacteria. Nat Biotechnol 1983;1:784-91.
73. Williams DR, Young DI, Young M. Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum. J Gen Microbiol 1990;136:819-26.
74. Piekarski T, Buchholz I, Drepper T, et al. Genetic tools for the investigation of Roseobacter clade bacteria. BMC Microbiol 2009;9:265.
75. Purdy D, O’Keeffe TA, Elmore M, et al. Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier. Mol Microbiol 2002;46:439-52.
76. Richhardt J, Larsen M, Meinhardt F. An improved transconjugation protocol for Bacillus megaterium facilitating a direct genetic knockout. Appl Microbiol Biotechnol 2010;86:1959-65.
77. Schäfer A, Kalinowski J, Simon R, Seep-Feldhaus AH, Pühler A. High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria. J Bacteriol 1990;172:1663-6.
78. Donahue JP, Israel DA, Peek RM, Blaser MJ, Miller GG. Overcoming the restriction barrier to plasmid transformation of Helicobacter pylori. Mol Microbiol 2000;37:1066-74.
79. Kwak J, Jiang H, Kendrick KE. Transformation using in vivo and in vitro methylation in Streptomyces griseus. FEMS Microbiol Lett 2002;209:243-8.
80. Yasui K, Kano Y, Tanaka K, et al. Improvement of bacterial transformation efficiency using plasmid artificial modification. Nucleic Acids Res 2009;37:e3.
81. Edwards RA, Helm RA, Maloy SR. Increasing DNA transfer efficiency by temporary inactivation of host restriction. Biotechniques 1999;26:892-4, 896, 898 passim.
82. Lin YL, Blaschek HP. Transformation of heat-treated clostridium acetobutylicum protoplasts with pUB110 plasmid DNA. Appl Environ Microbiol 1984;48:737-42.
83. Kirk JA, Fagan RP. Heat shock increases conjugation efficiency in Clostridium difficile. Anaerobe 2016;42:1-5.
84. Chen Q, Fischer JR, Benoit VM, Dufour NP, Youderian P, Leong JM. In vitro CpG methylation increases the transformation efficiency of Borrelia burgdorferi strains harboring the endogenous linear plasmid lp56. J Bacteriol 2008;190:7885-91.
85. Greene P, Poonian M, Nussbaum A, et al. Restriction and modification of a self-complementary octanucleotide containing the EcoRI substrate. J Mol Biol 1975;99:237-61.
86. Monk IR, Foster TJ. Genetic manipulation of Staphylococci-breaking through the barrier. Front Cell Infect Microbiol 2012;2:49.
87. Kreiswirth BN, Löfdahl S, Betley MJ, et al. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 1983;305:709-12.
88. Fang F, Li Y, Bumann M, et al. Allelic variation of bile salt hydrolase genes in Lactobacillus salivarius does not determine bile resistance levels. J Bacteriol 2009;191:5743-57.
89. van Pijkeren JP, Britton RA. High efficiency recombineering in lactic acid bacteria. Nucleic Acids Res 2012;40:e76.
90. O’Connell Motherway M, O’Driscoll J, Fitzgerald GF, Van Sinderen D. Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003. Microb Biotechnol 2009;2:321-32.
91. Guzman LM, Belin D, Carson MJ, Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 1995;177:4121-30.
92. Hoedt EC, Bottacini F, Cash N, et al. Broad purpose vector for site-directed insertional mutagenesis in Bifidobacterium breve. Front Microbiol 2021;12:636822.
93. De Ste Croix M, Vacca I, Kwun MJ, et al. Phase-variable methylation and epigenetic regulation by type I restriction-modification systems. FEMS Microbiol Rev 2017;41:S3-S15.
94. De Maio N, Shaw LP, Hubbard A, et al. Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes. Microb Genom 2019;5:e000294.
95. García-Bayona L, Comstock LE. Streamlined genetic manipulation of diverse Bacteroides and Parabacteroides isolates from the human gut microbiota. mBio 2019;10:e01762-19.
96. Zeaiter Z, Mapelli F, Crotti E, Borin S. Methods for the genetic manipulation of marine bacteria. Electron J Biotechnol 2018;33:17-28.
97. Gagarinova A, Emili A. Genome-scale genetic manipulation methods for exploring bacterial molecular biology. Mol Biosyst 2012;8:1626-38.
98. Murphy KC. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 1998;180:2063-71.
99. Yu H, Yin J, Li H, Yang S, Shen Z. Construction and selection of the novel recombinant Escherichia coli strain for poly(β-hydroxybutyrate) production. J Biosci Bioeng 2000;89:307-11.
100. Zhang Y, Buchholz F, Muyrers JP, Stewart AF. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 1998;20:123-8.
101. van Kessel JC, Hatfull GF. Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets. Mol Microbiol 2008;67:1094-107.
102. Wang S, Zhao Y, Leiby M, Zhu J. A new positive/negative selection scheme for precise BAC recombineering. Mol Biotechnol 2009;42:110-6.
103. Warner JR, Reeder PJ, Karimpour-Fard A, Woodruff LB, Gill RT. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol 2010;28:856-62.
104. Dalia AB, McDonough E, Camilli A. Multiplex genome editing by natural transformation. Proc Natl Acad Sci USA 2014;111:8937-42.
105. Dalia TN, Hayes CA, Stolyar S, Marx CJ, McKinlay JB, Dalia AB. Multiplex genome editing by natural transformation (MuGENT) for synthetic biology in vibrio natriegens. ACS Synth Biol 2017;6:1650-1655.
106. Dalia TN, Hayes CA, Stolyar S, Marx CJ, McKinlay JB, Dalia AB. Multiplex genome editing by natural transformation (MuGENT) for synthetic biology in vibrio natriegens. ACS Synth Biol 2017;6:1650-5.
107. Gao L, Altae-Tran H, Böhning F, et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 2020;369:1077-84.
108. Selle K, Klaenhammer TR, Barrangou R. CRISPR-based screening of genomic island excision events in bacteria. Proc Natl Acad Sci USA 2015;112:8076-81.
109. Sorek R, Lawrence CM, Wiedenheft B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 2013;82:237-66.
110. Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 2020;18:67-83.
111. Selle K, Barrangou R. Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol 2015;23:225-32.
112. Wasels F, Jean-Marie J, Collas F, López-Contreras AM, Lopes Ferreira N. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum. J Microbiol Methods 2017;140:5-11.
113. Pan M, Morovic W, Hidalgo-Cantabrana C, et al. Genomic and epigenetic landscapes drive CRISPR-based genome editing in Bifidobacterium. Proc Natl Acad Sci USA 2022;119:e2205068119.
114. Rubin BE, Diamond S, Cress BF, et al. Species- and site-specific genome editing in complex bacterial communities. Nat Microbiol 2022;7:34-47.
115. Vo PLH, Ronda C, Klompe SE, et al. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. Nat Biotechnol 2021;39:480-9.
116. Langridge GC, Phan MD, Turner DJ, et al. Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 2009;19:2308-16.
117. Gawronski JD, Wong SM, Giannoukos G, Ward DV, Akerley BJ. Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci USA 2009;106:16422-7.
118. van Opijnen T, Bodi KL, Camilli A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 2009;6:767-72.
119. Goodman AL, McNulty NP, Zhao Y, et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 2009;6:279-89.
120. Todor H, Silvis MR, Osadnik H, Gros CA. Bacterial CRISPR screens for gene function. Curr Opin Microbiol 2021;59:102-9.
121. Loman NJ, Constantinidou C, Chan JZ, et al. High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol 2012;10:599-606.
122. Daniel AS, Martin J, Vanat I, Whitehead TR, Flint HJ. Expression of a cloned cellulase/xylanase gene from Prevotella ruminicola in Bacteroides vulgatus, Bacteroides uniformis and Prevotella ruminicola. J Appl Bacteriol 1995;79:417-24.
123. Shoemaker NB, Anderson KL, Smithson SL, Wang GR, Salyers AA. Conjugal transfer of a shuttle vector from the human colonic anaerobe Bacteroides uniformis to the ruminal anaerobe Prevotella (Bacteroides) ruminicola B14. Appl Environ Microbiol 1991;57:2114-20.
124. Béchet M, Pheulpin P, Flint HJ, Martin J, Dubourguier H-C. Transfer of hybrid plasmids based on the replicon pRRI7 from Escherichia coli to Bacteroides and Prevotella strains. J Appl Bacteriol 1993;74:542-548.
125. Asmundson RV, Kelly WJ. Isolation and characterization of plasmid DNA fromRuminococcus. Curr Microbiol 1987;16:97-100.
126. Ohara H, Miyagi T, Kaneichi K, et al. Structural analysis of a new cryptic plasmid pAR67 isolated from Ruminococcus albus AR67. Plasmid 1998;39:84-8.
127. May T, Kocherginskaya SA, Mackie RI, Vercoe PE, White BA. Complete nucleotide sequence of a cryptic plasmid, pBAW301, from the ruminal anaerobe Ruminococcus flavefaciens R13e2. FEMS Microbiol Lett 1996;144:221-7.
128. Aminov RI, Kaneichi K, Miyagi T, Sakka K, Ohmiya K. Construction of genetically marked Ruminococcus albus strains and conjugal transfer of plasmid pAMβ1 into them. J Fermentation Bioeng 1994;78:1-5.
129. Cocconcelli PS, Ferrari E, Rossi F, Bottazzi V. Plasmid transformation of Ruminococcus albus by means of high-voltage electroporation. FEMS Microbiol Lett 1992;94:203-7.
130. Cocconcelli P, Gasson M, Morelli L, Bottazzi V. Single-stranded DNA plasmid, vector construction and cloning of Bacillus stearothermophilus α-amilase in Lactobacillus. Res Microbiol 1991;142:643-52.
131. Collins ME, Oultram JD, Young M. Identification of restriction fragments from two cryptic Clostridium butyricum plasmids that promote the establishment of a replication-defective plasmid in Bacillus subtilis. J Gen Microbiol 1985;131:2097-105.