REFERENCES
1. Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr 2012;96:544-51.
2. Cabrera-Rubio R, Kunz C, Rudloff S, et al. Association of maternal secretor status and human milk oligosaccharides with milk microbiota: an observational pilot study. J Pediatr Gastroenterol Nutr 2019;68:256-63.
3. Kumar H, du Toit E, Kulkarni A, et al. Distinct patterns in human milk microbiota and fatty acid profiles across specific geographic locations. Front Microbiol 2016;7:1619.
4. Ruiz L, Espinosa-Martos I, García-Carral C, et al. What’s normal? Immune Profiling of Human Milk from Healthy Women Living in Different Geographical and Socioeconomic Settings. Front Immunol 2017;8:696.
5. Gomez-Gallego C, Garcia-Mantrana I, Salminen S, Collado MC. The human milk microbiome and factors influencing its composition and activity. Semin Fetal Neonatal Med 2016;21:400-5.
6. Selma-Royo M, Calvo Lerma J, Cortés-Macías E, Collado MC. Human milk microbiome: from actual knowledge to future perspective. Semin Perinatol 2021;45:151450.
8. Lyons KE, Ryan CA, Dempsey EM, Ross RP, Stanton C. Breast milk, a source of beneficial microbes and associated benefits for infant health. Nutrients 2020;12:1039.
9. Andreas NJ, Kampmann B, Mehring Le-Doare K. Human breast milk: a review on its composition and bioactivity. Early Hum Dev 2015;91:629-35.
10. Fernández L, Langa S, Martín V, et al. The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 2013;69:1-10.
11. Schwab C, Voney E, Ramirez Garcia A, Vischer M, Lacroix C. Characterization of the cultivable microbiota in fresh and stored mature human breast milk. Front Microbiol 2019;10:2666.
12. Sipos R, Székely AJ, Palatinszky M, Révész S, Márialigeti K, Nikolausz M. Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis. FEMS Microbiol Ecol 2007;60:341-50.
13. Martín R, Jiménez E, Heilig H, et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 2009;75:965-9.
14. Klappenbach JA, Saxman PR, Cole JR, Schmidt TM. rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res 2001;29:181-4.
15. Johnson JS, Spakowicz DJ, Hong BY, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 2019;10:5029.
16. Bukin YS, Galachyants YP, Morozov IV, Bukin SV, Zakharenko AS, Zemskaya TI. The effect of 16S rRNA region choice on bacterial community metabarcoding results. Sci Data 2019;6:190007.
17. Perisin M, Vetter M, Gilbert JA, Bergelson J. 16Stimator: statistical estimation of ribosomal gene copy numbers from draft genome assemblies. ISME J 2016;10:1020-4.
18. Starke R, Pylro VS, Morais DK. 16S rRNA Gene copy number normalization does not provide more reliable conclusions in metataxonomic surveys. Microb Ecol 2021;81:535-9.
19. la Cuesta-Zuluaga J, Escobar JS. Considerations for optimizing microbiome analysis using a marker gene. Front Nutr 2016;3:26.
20. Chu ND, Smith MB, Perrotta AR, Kassam Z, Alm EJ. Profiling living bacteria informs preparation of fecal microbiota transplantations. PLoS One 2017;12:e0170922.
21. Stinson LF, Trevenen ML, Geddes DT. The viable microbiome of human milk differs from the metataxonomic profile. Nutrients 2021;13:4445.
22. Markusková B, Minarovičová J, Véghová A, Drahovská H, Kaclíková E. Impact of DNA extraction methods on 16S rRNA-based profiling of bacterial communities in cheese. J Microbiol Methods 2021;184:106210.
23. Syoc E, Carrillo Gaeta N, Ganda E. Choice of commercial DNA extraction method does not affect 16s sequencing outcomes in cloacal swabs. Animals (Basel) 2021;11:1372.
24. Salter SJ, Cox MJ, Turek EM, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 2014;12:87.
25. Eisenhofer R, Minich JJ, Marotz C, Cooper A, Knight R, Weyrich LS. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol 2019;27:105-17.
26. Selway CA, Eisenhofer R, Weyrich LS. Microbiome applications for pathology: challenges of low microbial biomass samples during diagnostic testing. J Pathol Clin Res 2020;6:97-106.
27. Eisenhofer R, Minich JJ, Marotz C, Cooper A, Knight R, Weyrich LS. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol 2019;27:105-17.
28. Karstens L, Asquith M, Davin S, Fair D, Gregory WT, Wolfe AJ, et al. Sequencing experiments. mSystems. 2019;4:1-14.
29. Zinter MS, Mayday MY, Ryckman KK, Jelliffe-Pawlowski LL, DeRisi JL. Towards precision quantification of contamination in metagenomic sequencing experiments. Microbiome 2019;7:62.
30. Lackey KA, Williams JE, Price WJ, et al. Comparison of commercially-available preservatives for maintaining the integrity of bacterial DNA in human milk. J Microbiol Methods 2017;141:73-81.
31. Mirzayi C, Renson A, Zohra F, et al. Genomic Standards Consortium. Massive analysis and quality control society. Reporting guidelines for human microbiome research: the STORMS checklist. Nat Med 2021;27:1885-92.
32. Berini F, Casciello C, Marcone GL, Marinelli F. Metagenomics: novel enzymes from non-culturable microbes. FEMS Microbiol Lett 2017:364.
33. Asnicar F, Manara S, Zolfo M, et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems 2017;2:e00164-16.
34. Ferretti P, Pasolli E, Tett A, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 2018;24:133-145.e5.
35. Daudi N, Shouval D, Stein-Zamir C, Ackerman Z. Breastmilk hepatitis a virus RNA in nursing mothers with acute hepatitis a virus infection. Breastfeed Med 2012;7:313-5.
36. Dupont-rouzeyrol M, Biron A, O’connor O, Huguon E, Descloux E. Infectious Zika viral particles in breastmilk. The Lancet 2016;387:1051.
37. Mutschlechner W, Karall D, Hartmann C, et al. Mammary candidiasis: molecular-based detection of Candida species in human milk samples. Eur J Clin Microbiol Infect Dis 2016;35:1309-13.
38. Jiménez E, de Andrés J, Manrique M, et al. Metagenomic analysis of milk of healthy and mastitis-suffering women. J Hum Lact 2015;31:406-15.
39. Boix-Amorós A, Collado MC, Mira A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front Microbiol 2016;7:492.
40. Simón-Soro A, Guillen-Navarro M, Mira A. Metatrasciptomics reveals overall active bacterial composition in caries lesions. J Oral Microbiol 2014;1:1-6.
41. Belda-Ferre P, Williamson J, Simón-Soro Á, Artacho A, Jensen ON, Mira A. The human oral metaproteome reveals potential biomarkers for caries disease. Proteomics 2015;15:3497-507.
42. Nolan LS, Lewis AN, Gong Q, et al. Untargeted metabolomic analysis of human milk from mothers of preterm infants. Nutrients 2021;13:3604.
43. Avershina E, Cabrera Rubio R, Lundgård K, et al. Effect of probiotics in prevention of atopic dermatitis is dependent on the intrinsic microbiota at early infancy. J Allergy Clin Immunol 2017;139:1399-1402.e8.
44. Moossavi S, Atakora F, Miliku K, et al. Integrated analysis of human milk microbiota with oligosaccharides and fatty acids in the CHILD cohort. Front Nutr 2019;6:58.
45. Heikkilä MP, Saris PE. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol 2003;95:471-8.
46. Martín R, Langa S, Reviriego C, et al. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr 2003;143:754-8.
47. Ruiz L, Bacigalupe R, García-Carral C, et al. Microbiota of human precolostrum and its potential role as a source of bacteria to the infant mouth. Sci Rep 2019;9:8435.
48. Gueimonde M, Laitinen K, Salminen S, Isolauri E. Breast milk: a source of bifidobacteria for infant gut development and maturation? Neonatology 2007;92:64-6.
49. Zimmermann P, Curtis N. Breast milk microbiota: a review of the factors that influence composition. J Infect 2020;81:17-47.
50. Togo A, Dufour JC, Lagier JC, Dubourg G, Raoult D, Million M. Repertoire of human breast and milk microbiota: a systematic review. Future Microbiol 2019;14:623-41.
51. Boix-Amorós A, Martinez-Costa C, Querol A, Collado MC, Mira A. Multiple approaches detect the presence of fungi in human breastmilk samples from healthy mothers. Sci Rep 2017;7:13016.
52. Morrill JF, Pappagianis D, Heinig MJ, Lönnerdal B, Dewey KG. Detecting Candida albicans in human milk. J Clin Microbiol 2003;41:475-8.
53. Amir LH, Donath SM, Garland SM, et al. Does Candida and/or Staphylococcus play a role in nipple and breast pain in lactation? BMJ Open 2013;3:e002351.
54. Heisel T, Nyaribo L, Sadowsky MJ, Gale CA. Breastmilk and NICU surfaces are potential sources of fungi for infant mycobiomes. Fungal Genet Biol 2019;128:29-35.
55. Moossavi S, Fehr K, Derakhshani H, et al. Human milk fungi: environmental determinants and inter-kingdom associations with milk bacteria in the CHILD Cohort Study. BMC Microbiol 2020;20:146.
56. Boix-Amorós A, Puente-Sánchez F, du Toit E, et al. Mycobiome profiles in breast milk from healthy women depend on mode of delivery, geographic location, and interaction with bacteria. Appl Environ Microbiol 2019;85:e02994-18.
57. Maqsood R, Reus JB, Wu LI, et al. Breast milk virome and bacterial microbiome resilience in kenyan women living with HIV. mSystems 2021;6:e01079-20.
58. Pannaraj PS, Ly M, Cerini C, et al. Shared and distinct features of human milk and infant stool viromes. Front Microbiol 2018;9:1162.
59. Mohandas S, Pannaraj P. Beyond the bacterial microbiome: virome of human milk and effects on the developing infant. In: Ogra PL, Walker WA, Lönnerdal B, editors. Milk, Mucosal Immunity, and the Microbiome: Impact on the Neonate. S. Karger AG; 2020. p. 1-8.
60. Dinleyici M, Pérez-Brocal V, Arslanoglu S, et al. Human milk virome analysis: changing pattern regarding mode of delivery, birth weight, and lactational stage. Nutrients 2021;13:1779.
61. Kirsch JM, Brzozowski RS, Faith D, Round JL, Secor PR, Duerkop BA. Bacteriophage-bacteria interactions in the gut: from invertebrates to mammals. Annu Rev Virol 2021;8:95-113.
62. Duranti S, Lugli GA, Mancabelli L, et al. Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome 2017;5:66.
63. Murphy K, Curley D, O'Callaghan TF, et al. The composition of human milk and infant faecal microbiota over the first three months of Life: a pilot study. Sci Rep 2017;7:40597.
65. Coughlan S, Das A, O'Herlihy E, Shanahan F, O’Toole PW, Jeffery IB. The gut virome in Irritable Bowel Syndrome differs from that of controls. Gut Microbes 2021;13:1-15.
66. Freer G, Maggi F, Pifferi M, Di Cicco ME, Peroni DG, Pistello M. The virome and its major component, anellovirus, a convoluted system molding human immune defenses and possibly affecting the development of asthma and respiratory diseases in childhood. Front Microbiol 2018;9:686.
67. Abellan-Schneyder I, Siebert A, Hofmann K, Wenning M, Neuhaus K. Full-Length SSU rRNA gene sequencing allows species-level detection of bacteria, archaea, and yeasts present in milk. Microorganisms 2021;9:1251.
68. Togo AH, Grine G, Khelaifia S, et al. Culture of methanogenic archaea from human colostrum and milk. Sci Rep 2019;9:18653.
69. Cortés-Macías E, Selma-Royo M, Martínez-Costa C, Collado MC. Breastfeeding practices influence the breast milk microbiota depending on pre-gestational maternal bmi and weight gain over pregnancy. Nutrients 2021;13:1518.
70. Moossavi S, Sepehri S, Robertson B, et al. Composition and variation of the human milk microbiota are influenced by maternal and early-life factors. Cell Host Microbe 2019;25:324-335.e4.
71. Nasser R, Stephen AM, Goh YK, Clandinin MT. The effect of a controlled manipulation of maternal dietary fat intake on medium and long chain fatty acids in human breast milk in Saskatoon, Canada. Int Breastfeed J 2010;5:3.
72. Prentice A, Jarjou LM, Drury PJ, Dewit O, Crawford MA. Breast-milk fatty acids of rural Gambian mothers: effects of diet and maternal parity. J Pediatr Gastroenterol Nutr 1989;8:486-90.
73. Seferovic MD, Mohammad M, Pace RM, et al. Maternal diet alters human milk oligosaccharide composition with implications for the milk metagenome. Sci Rep 2020;10:22092.
74. Samuel TM, Binia A, de Castro CA, et al. Impact of maternal characteristics on human milk oligosaccharide composition over the first 4 months of lactation in a cohort of healthy European mothers. Sci Rep 2019;9:11767.
75. Thibeau S, D'Apolito K. Review of the relationships between maternal characteristics and preterm breastmilk immune components. Biol Res Nurs 2012;14:207-16.
76. Demers-Mathieu V, Mathijssen G, Dapra C, Do DM, Medo E. Active free secretory component and secretory IgA in human milk: do maternal vaccination, allergy, infection, mode of delivery, nutrition and active lifestyle change their concentrations? Pediatr Res 2021;89:795-802.
77. Liu L, Guo Q, Cui M, et al. Impact of maternal nutrition during early pregnancy and diet during lactation on lactoferrin in mature breast milk. Nutrition 2022;93:111500.
78. Hernández-Olivas E, Muñoz-Pina S, Sánchez-García J, Andrés A, Heredia A. Understanding the role of food matrix on the digestibility of dairy products under elderly gastrointestinal conditions. Food Res Int 2020;137:109454.
79. Asensio-Grau A, Calvo-Lerma J, Heredia A, Andrés A. Fat digestibility in meat products: influence of food structure and gastrointestinal conditions. Int J Food Sci Nutr 2019;70:530-9.
80. Heredia A, Asensio-Grau A, Calvo-Lerma J, Andrés A. Interaction among macronutrients and their effect on lypolisis. In: Grundy MM-L, Wilde PJ, editors. Bioaccessibility dig lipids from food. Cham: Springer International Publishing; 2021.
81. Veintimilla-gozalbo E, Asensio-grau A, Calvo-lerma J, Heredia A, Andrés A. In vitro simulation of human colonic fermentation: a practical approach towards models’ design and analytical tools. Applied Sciences 2021;11:8135.
82. Ménard O, Bourlieu C, De Oliveira SC, et al. A first step towards a consensus static in vitro model for simulating full-term infant digestion. Food Chem 2018;240:338-45.
83. Fondaco D, Alhasawi F, Lan Y, Ben-elazar S, Connolly K, Rogers MA. Biophysical aspects of lipid digestion in human breast milk and similac™ infant formulas. Food Biophysics 2015;10:282-91.
84. Pan Y, Xia Y, Yu X, et al. Comparative analysis of lipid digestion characteristics in human, bovine, and caprine milk based on simulated in vitro infant gastrointestinal digestion. J Agric Food Chem 2021;69:10104-13.
85. Cheong LZ, Jiang C, He X, Song S, Lai OM. Lipid profiling, particle size determination, and in vitro simulated gastrointestinal lipolysis of mature human milk and infant formula. J Agric Food Chem 2018;66:12042-50.
86. Marques MC, Perina NP, Mosquera EMB, Tomé TM, Lazarini T, Mariutti LRB. DHA bioaccessibility in infant formulas and preschool children milks. Food Res Int 2021;149:110698.
87. Jensen RG, Clark RM, deJong FA, Hamosh M, Liao TH, Mehta NR. The lipolytic triad: human lingual, breast milk, and pancreatic lipases: physiological implications of their characteristics in digestion of dietary fats. J Pediatr Gastroenterol Nutr 1982;1:243-55.
88. Maathuis A, Havenaar R, He T, Bellmann S. Protein digestion and quality of goat and cow milk infant formula and human milk under simulated infant conditions. J Pediatr Gastroenterol Nutr 2017;65:661-6.
89. Gnoth MJ, Kunz C, Kinne-Saffran E, Rudloff S. Human milk oligosaccharides are minimally digested in vitro. J Nutr 2000;130:3014-20.
90. Davis JC, Totten SM, Huang JO, et al. Identification of oligosaccharides in feces of breast-fed infants and their correlation with the gut microbial community. Mol Cell Proteomics 2016;15:2987-3002.
91. Demers-Mathieu V, Underwood MA, Beverly RL, Nielsen SD, Dallas DC. Comparison of human milk immunoglobulin survival during gastric digestion between preterm and term infants. Nutrients 2018;10:631.
92. Lueangsakulthai J, Sah BNP, Scottoline BP, Dallas DC. Survival of recombinant monoclonal antibodies (IgG, IgA and sIgA) versus naturally-occurring antibodies (IgG and sIgA/IgA) in an ex vivo infant Digestion Model. Nutrients 2020;12:621.
93. Pieri M, Nicolaidou V, Paphiti I, Pipis S, Felekkis K, Papaneophytou C. Survival of vaccine-induced human milk SARS-CoV-2 IgG and IgA immunoglobulins across simulated human infant gastrointestinal digestion. medRxiv. Cold Spring Harbor Laboratory Press; 2021
94. Brandtzaeg P. The mucosal immune system and its integration with the mammary glands. J Pediatr 2010;156:S8-15.
95. Vasiljevic T. Probiotic cultures in cheese and yogurt. Encyclopedia of dairy sciences. Elsevier :2022. p. 472-88.
96. Melchior S, Marino M, D’este F, Innocente N, Nicoli MC, Calligaris S. Effect of the formulation and structure of monoglyceride-based gels on the viability of probiotic Lactobacillus rhamnosus upon in vitro digestion. Food Funct 2021;12:351-61.
97. Liu H, Cui SW, Chen M, et al. Protective approaches and mechanisms of microencapsulation to the survival of probiotic bacteria during processing, storage and gastrointestinal digestion: a review. Crit Rev Food Sci Nutr 2019;59:2863-78.
98. Cao Z, Wang X, Pang Y, Cheng S, Liu J. Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment. Nat Commun 2019;10:5783.
99. Cortes-Macías E, Selma-Royo M, García-Mantrana I, et al. Maternal diet shapes the breast milk microbiota composition and diversity: impact of mode of delivery and antibiotic exposure. J Nutr 2021;151:330-40.
100. Gómez-Gallego C, Morales JM, Monleón D, et al. Human breast milk NMR metabolomic profile across specific geographical locations and its association with the milk microbiota. Nutrients 2018;10:1355.
101. Chen J, Douglass J, Prasath V, et al. The microbiome and breast cancer: a review. Breast Cancer Res Treat 2019;178:493-6.
102. Stinson LF, Sindi ASM, Cheema AS, et al. The human milk microbiome: who, what, when, where, why, and how? Nutr Rev 2021;79:529-43.
103. Perez PF, Doré J, Leclerc M, et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 2007;119:e724-32.
104. Kordy K, Gaufin T, Mwangi M, et al. Contributions to human breast milk microbiome and enteromammary transfer of Bifidobacterium breve. PLoS One 2020;15:e0219633.
105. Fernández L, Rodríguez J. Human milk microbiota: origin and potential uses. In: Ogra PL, Walker WA, Lönnerdal B, editors. Milk, Mucosal immunity, and the microbiome: impact on the neonate. S. Karger AG; 2020. p. 1-11.
106. Moossavi S, Azad MB. Origins of human milk microbiota: new evidence and arising questions. Gut Microbes 2020;12:1667722.
107. Yassour M, Jason E, Hogstrom LJ, et al. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe 2018;24:146-154.e4.
108. Donnet-Hughes A, Perez PF, Doré J, et al. Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc Nutr Soc 2010;69:407-15.
109. Morais LH, Golubeva AV, Moloney GM, et al. Enduring behavioral effects induced by birth by caesarean section in the mouse. Curr Biol 2020;30:3761-3774.e6.
110. Ríos-Covian D, Langella P, Martín R. From short- to long-term effects of C-section delivery on microbiome establishment and host health. Microorganisms 2021;9:2122.
111. Rodríguez JM. The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv Nutr 2014;5:779-84.
112. Bäckhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015;17:690-703.
113. Stewart CJ, Ajami NJ, O'Brien JL, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018;562:583-8.
114. Sakwinska O, Bosco N. Host microbe interactions in the lactating mammary gland. Front Microbiol 2019;10:1863.
115. Fehr K, Moossavi S, Sbihi H, et al. Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the CHILD Cohort Study. Cell Host Microbe 2020;28:285-297.e4.
116. Walker WA. The importance of appropriate initial bacterial colonization of the intestine in newborn, child, and adult health. Pediatr Res 2017;82:387-95.
117. Ihekweazu FD, Versalovic J. Development of the pediatric gut microbiome: impact on health and disease. Am J Med Sci 2018;356:413-23.
118. Milani C, Duranti S, Bottacini F, et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev 2017;81:e00036-17.
119. Huërou-Luron I, Blat S, Boudry G. Breast- v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev 2010;23:23-36.
120. Rautava S. Early microbial contact, the breast milk microbiome and child health. J Dev Orig Health Dis 2016;7:5-14.
121. Yao Y, Cai X, Ye Y, Wang F, Chen F, Zheng C. The role of microbiota in infant health: from early life to adulthood. Front Immunol 2021;12:708472.
122. Jost T, Lacroix C, Braegger CP, Rochat F, Chassard C. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ Microbiol 2014;16:2891-904.
123. Matsumiya Y, Kato N, Watanabe K, Kato H. Molecular epidemiological study of vertical transmission of vaginal Lactobacillus species from mothers to newborn infants in Japanese, by arbitrarily primed polymerase chain reaction. J Infect Chemother 2002;8:43-9.
124. Albesharat R, Ehrmann MA, Korakli M, Yazaji S, Vogel RF. Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and faeces of mothers and their babies. Syst Appl Microbiol 2011;34:148-55.
125. Makino H, Kushiro A, Ishikawa E, et al. Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Appl Environ Microbiol 2011;77:6788-93.
126. Martín V, Maldonado-Barragán A, Moles L, et al. Sharing of bacterial strains between breast milk and infant feces. J Hum Lact 2012;28:36-44.
127. Milani C, Mancabelli L, Lugli GA, et al. Exploring vertical transmission of bifidobacteria from mother to child. Appl Environ Microbiol 2015;81:7078-87.
128. Biagi E, Quercia S, Aceti A, et al. The bacterial ecosystem of mother’s milk and infant’s mouth and gut. Front Microbiol 2017;8:1214.
129. Pannaraj PS, Li F, Cerini C, et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr 2017;171:647-54.
130. Yan W, Luo B, Zhang X, Ni Y, Tian F. Association and occurrence of bifidobacterial phylotypes between breast milk and fecal microbiomes in mother-infant dyads during the first 2 years of life. Front Microbiol 2021;12:669442.
131. Bilen M, Dufour JC, Lagier JC, et al. The contribution of culturomics to the repertoire of isolated human bacterial and archaeal species. Microbiome 2018;6:94.
132. Olivares M, Díaz-Ropero MP, Martín R, Rodríguez JM, Xaus J. Antimicrobial potential of four Lactobacillus strains isolated from breast milk. J Appl Microbiol 2006;101:72-9.
133. Bourlioux P, Koletzko B, Guarner F, Braesco V. The intestine and its microflora are partners for the protection of the host: report on the Danone Symposium “The Intelligent Intestine,” held in Paris, June 14, 2002. Am J Clin Nutr 2003;78:675-83.
134. Solopova A, Bottacini F, Venturi Degli Esposti E, et al. Riboflavin biosynthesis and overproduction by a derivative of the human gut commensal. Bifidobacterium longum 2020;11:573335.
135. Sela DA, Chapman J, Adeuya A, et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A 2008;105:18964-9.
136. Vatanen T, Plichta DR, Somani J, et al. Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life. Nat Microbiol 2019;4:470-9.
137. James K, Bottacini F, Contreras JIS, et al. Metabolism of the predominant human milk oligosaccharide fucosyllactose by an infant gut commensal. Sci Rep 2019;9:15427.
138. Thomson P, Medina DA, Garrido D. Human milk oligosaccharides and infant gut bifidobacteria: molecular strategies for their utilization. Food Microbiol 2018;75:37-46.
139. Mohammadi F, Eshaghi M, Razavi S, Sarokhalil DD, Talebi M, Pourshafie MR. Characterization of bacteriocin production in Lactobacillus spp. isolated from mother's milk. Microb Pathog 2018;118:242-6.
140. Díaz-Ropero MP, Martín R, Sierra S, et al. Two Lactobacillus strains, isolated from breast milk, differently modulate the immune response. J Appl Microbiol 2007;102:337-43.
141. Pérez-Cano FJ, Dong H, Yaqoob P. In vitro immunomodulatory activity of Lactobacillus fermentum CECT5716 and Lactobacillus salivarius CECT5713: two probiotic strains isolated from human breast milk. Immunobiology 2010;215:996-1004.
142. Maldonado J, Lara-Villoslada F, Sierra S, et al. Safety and tolerance of the human milk probiotic strain Lactobacillus salivarius CECT5713 in 6-month-old children. Nutrition 2010;26:1082-7.
143. Gil-Campos M, López MÁ, Rodriguez-Benítez MV, et al. Lactobacillus fermentum CECT 5716 is safe and well tolerated in infants of 1-6 months of age: a randomized controlled trial. Pharmacol Res 2012;65:231-8.
144. Cervantes-Barragan L, Chai JN, Tianero MD, et al. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science 2017;357:806-10.
145. Donaldson GP, Ladinsky MS, Yu KB, et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 2018;360:795-800.
146. Sambuy Y, De Angelis I, Ranaldi G, Scarino ML, Stammati A, Zucco F. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol 2005;21:1-26.
147. Sanderson IR, Ezzell RM, Kedinger M, et al. Human fetal enterocytes in vitro: modulation of the phenotype by extracellular matrix. Proc Natl Acad Sci U S A 1996;93:7717-22.
148. Owens RB, Smith HS, Nelson-Rees WA, Springer EL. Epithelial cell cultures from normal and cancerous human tissues. J Natl Cancer Inst 1976;56:843-9.
149. Jiang F, Meng D, Weng M, et al. The symbiotic bacterial surface factor polysaccharide A on Bacteroides fragilis inhibits IL-1β-induced inflammation in human fetal enterocytes via toll receptors 2 and 4. PLoS One 2017;12:e0172738.
150. Meng D, Sommella E, Salviati E, et al. Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr Res 2020;88:209-17.
151. Meng D, Zhu W, Ganguli K, Shi HN, Walker WA. Anti-inflammatory effects of Bifidobacterium longum subsp infantis secretions on fetal human enterocytes are mediated by TLR-4 receptors. Am J Physiol Gastrointest Liver Physiol 2016;311:G744-53.
152. Glowacki RWP, Engelhart MJ, Ahern PP. Controlled complexity: optimized systems to study the role of the gut microbiome in host physiology. Front Microbiol 2021;12:735562.
153. Puschhof J, Pleguezuelos-Manzano C, Clevers H. Organoids and organs-on-chips: Insights into human gut-microbe interactions. Cell Host Microbe 2021;29:867-78.
154. Stroulios G, Stahl M, Elstone F, et al. Culture methods to study apical-specific interactions using intestinal organoid models. J Vis Exp 2021; doi: 10.3791/62330.
155. Gao Y, Davis B, Zhu W, Zheng N, Meng D, Walker WA. Short-chain fatty acid butyrate, a breast milk metabolite, enhances immature intestinal barrier function genes in response to inflammation in vitro and in vivo. Am J Physiol Gastrointest Liver Physiol 2021;320:G521-30.
156. Noel G, In JG, Lemme-Dumit JM, et al. Human breast milk enhances intestinal mucosal barrier function and innate immunity in a healthy pediatric human enteroid model. Front Cell Dev Biol 2021;9:685171.
157. Kim HJ, Ingber DE. Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol (Camb) 2013;5:1130-40.
158. Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 2012;12:2165-74.
159. Yissachar N, Zhou Y, Ung L, et al. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell 2017;168:1135-1148.e12.
160. Sumbal J, Chiche A, Charifou E, Koledova Z, Li H. Primary mammary organoid model of lactation and involution. Front Cell Dev Biol 2020;8:68.
161. Charifou E, Sumbal J, Koledova Z, Li H, Chiche A. A robust mammary organoid system to model lactation and involution-like processes. Bio Protoc 2021;11:e3996.
162. Mroue R, Bissell MJ. Three-dimensional cultures of mouse mammary epithelial cells. In: Randell SH, Fulcher ML, editors. Epithelial Cell Culture Protocols. Totowa: Humana Press; 2013. p. 221-50.
163. Nauwelaerts N, Deferm N, Smits A, et al. A comprehensive review on non-clinical methods to study transfer of medication into breast milk - a contribution from the ConcePTION project. Biomed Pharmacother 2021;136:111038.
164. Sankar MJ, Sinha B, Chowdhury R, et al. Optimal breastfeeding practices and infant and child mortality: a systematic review and meta-analysis. Acta Paediatr 2015;104:3-13.
165. Victora CG, Bahl R, Barros AJD, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. The Lancet 2016;387:475-90.
166. Li R, Dee D, Li CM, Hoffman HJ, Grummer-Strawn LM. Breastfeeding and risk of infections at 6 years. Pediatrics 2014;134 Suppl 1:S13-20.
167. Ma J, Li Z, Zhang W, et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. Sci Rep 2020;10:15792.
168. Forbes JD, Azad MB, Vehling L, et al. Canadian Healthy Infant Longitudinal Development (CHILD) study investigators. Association of exposure to formula in the hospital and subsequent infant feeding practices with gut microbiota and risk of overweight in the first year of life. JAMA Pediatr 2018;172:e181161.
169. Boudry G, Charton E, Le Huerou-Luron I, et al. The relationship between breast milk components and the infant gut microbiota. Front Nutr 2021;8:629740.
170. Chiu Y, Tsai J, Lin S, Chotirosvakin C, Lin M. Characterisation of bifidobacteria with immunomodulatory properties isolated from human breast milk. Journal of Functional Foods 2014;7:700-8.
171. Alsaweed M, Hartmann PE, Geddes DT, Kakulas F. MicroRNAs in breastmilk and the lactating breast: potential immunoprotectors and developmental regulators for the infant and the mother. Int J Environ Res Public Health 2015;12:13981-4020.
172. Kim YJ. Immunomodulatory effects of human colostrum and milk. Pediatr Gastroenterol Hepatol Nutr 2021;24:337-45.
173. Altobelli E, Angeletti PM, Verrotti A, Petrocelli R. The impact of human milk on necrotizing enterocolitis: a systematic review and meta-analysis. Nutrients 2020;12:1322.
174. Arboleya S, Sánchez B, Milani C, et al. Intestinal microbiota development in preterm neonates and effect of perinatal antibiotics. J Pediatr 2015;166:538-44.
175. Masi AC, Embleton ND, Lamb CA, et al. Human milk oligosaccharide DSLNT and gut microbiome in preterm infants predicts necrotising enterocolitis. Gut 2021;70:2273-82.
176. Walker W, Meng D. Breast milk and microbiota in the premature gut: a method of preventing necrotizing enterocolitis. In: Ogra PL, Walker WA, Lönnerdal B, editors. Milk, Mucosal Immunity, and the Microbiome: Impact on the Neonate. S. Karger AG; 2020. p. 1-10.
177. Henrick BM, Rodriguez L, Lakshmikanth T, et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 2021;184:3884-3898.e11.
178. Ganguli K, Walker WA. Probiotics in the prevention of necrotizing enterocolitis. J Clin Gastroenterol 2011;45 Suppl:S133-8.
179. Sharif S, Meader N, Oddie SJ, Rojas-Reyes MX, McGuire W. Probiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. Cochrane Database Syst Rev 2020;10:CD005496.
180. Kramer MS, Aboud F, Mironova E, et al. Promotion of Breastfeeding Intervention Trial (PROBIT) Study Group. Breastfeeding and child cognitive development: new evidence from a large randomized trial. Arch Gen Psychiatry 2008;65:578-84.
181. Horta BL, Loret de Mola C, Victora CG. Breastfeeding and intelligence: a systematic review and meta-analysis. Acta Paediatr 2015;104:14-9.
182. Boucher O, Julvez J, Guxens M, et al. Association between breastfeeding duration and cognitive development, autistic traits and ADHD symptoms: a multicenter study in Spain. Pediatr Res 2017;81:434-42.
183. Peyre H, Bernard JY, Hoertel N, et al. Differential effects of factors influencing cognitive development at the age of 5-to-6 years. Cognitive Development 2016;40:152-62.
184. Der G, Batty GD, Deary IJ. Effect of breast feeding on intelligence in children: prospective study, sibling pairs analysis, and meta-analysis. BMJ 2006;333:945.
185. Walfisch A, Sermer C, Cressman A, Koren G. Breast milk and cognitive development--the role of confounders: a systematic review. BMJ Open 2013;3:e003259.
186. Carlson AL, Xia K, Azcarate-Peril MA, Goldman BD, Ahn M, Styner MA, et al. Infant gut microbiome associated with cognitive development. 2018;83:148-59.
187. Sordillo JE, Korrick S, Laranjo N, et al. Association of the infant gut microbiome with early childhood neurodevelopmental outcomes: an ancillary study to the VDAART randomized clinical trial. JAMA Netw Open 2019;2:e190905.
188. Tamana SK, Tun HM, Konya T, et al. Bacteroides-dominant gut microbiome of late infancy is associated with enhanced neurodevelopment. Gut Microbes 2021;13:1-17.
189. Docq S, Spoelder M, Wang W, Homberg JR. The protective and long-lasting effects of human milk oligosaccharides on cognition in mammals. Nutrients 2020;12:3572.
190. Ekelund L, Gloppen I, Øien T, Simpson MR. Duration of breastfeeding, age at introduction of complementary foods and allergy-related diseases: a prospective cohort study. Int Breastfeed J 2021;16:5.
191. Lodge CJ, Tan DJ, Lau MX, et al. Breastfeeding and asthma and allergies: a systematic review and meta-analysis. Acta Paediatr 2015;104:38-53.
192. den Elsen LWJ, Garssen J, Burcelin R, Verhasselt V. Shaping the gut microbiota by breastfeeding: the gateway to allergy prevention? Front Pediatr 2019;7:47.
193. Renz H, Skevaki C. Early life microbial exposures and allergy risks: opportunities for prevention. Nat Rev Immunol 2021;21:177-91.
194. Dzidic M, Mira A, Artacho A, Abrahamsson TR, Jenmalm MC, Collado MC. Allergy development is associated with consumption of breastmilk with a reduced microbial richness in the first month of life. Pediatr allergy Immunol. 2020;31:250-7.
195. Forsberg A, West CE, Prescott SL, Jenmalm MC. Pre- and probiotics for allergy prevention: time to revisit recommendations? Clin Exp Allergy 2016;46:1506-21.
196. Cuello-Garcia CA, Brożek JL, Fiocchi A, et al. Probiotics for the prevention of allergy: a systematic review and meta-analysis of randomized controlled trials. J Allergy Clin Immunol 2015;136:952-61.
197. Amalia N, Orchard D, Francis KL, King E. Systematic review and meta-analysis on the use of probiotic supplementation in pregnant mother, breastfeeding mother and infant for the prevention of atopic dermatitis in children. Australas J Dermatol 2020;61:e158-73.
198. Bider-Canfield Z, Martinez MP, Wang X, et al. Maternal obesity, gestational diabetes, breastfeeding and childhood overweight at age 2 years. Pediatr Obes 2017;12:171-8.
199. Ortega-García JA, Kloosterman N, Alvarez L, et al. Full breastfeeding and obesity in children: a prospective study from birth to 6 years. Child Obes 2018;14:327-37.
200. Wang L, Collins C, Ratliff M, Xie B, Wang Y. Breastfeeding reduces childhood obesity risks. Child Obes 2017;13:197-204.
201. Wallby T, Lagerberg D, Magnusson M. Relationship between breastfeeding and early childhood obesity: results of a prospective longitudinal study from birth to 4 years. Breastfeed Med 2017;12:48-53.
202. Koleva PT, Bridgman SL, Kozyrskyj AL. The infant gut microbiome: evidence for obesity risk and dietary intervention. Nutrients. Multidisciplinary Digital Publishing Institute (MDPI); 2015;7.
203. Korpela K, Salonen A, Virta LJ, Kekkonen RA, de Vos WM. Association of early-life antibiotic use and protective effects of breastfeeding: role of the intestinal microbiota. JAMA Pediatr 2016;170:750-7.