REFERENCES
2. Sanger F, Tuppy H. The amino-acid sequence in the phenylalanyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. Biochem J 1951;49:463-81.
3. Sanger F, Thompson EO. The amino-acid sequence in the glycyl chain of insulin. II. The investigation of peptides from enzymic hydrolysates. Biochem J 1953;53:366-74.
4. Sanger F, Thompson EO. The amino-acid sequence in the glycyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. Biochem J 1953;53:353-66.
6. Sanger F, Coulson A. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 1975;94:441-8.
9. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 1977;74:5463-7.
10. Smith V, Brown CM, Bankier AT, Barrell BG. Semiautomated preparation of DNA templates for large-scale sequencing projects. DNA Seq 1990;1:73-8.
11. Fujita M, Usui S, Kiyama M, et al. Chemical robot for enzymatic reactions and extraction processes of DNA in DNA sequence analysis. Biotechniques 1990;9:584-6, 588.
12. Mardis ER, Roe BA. Automated methods for single-stranded DNA isolation and dideoxynucleotide DNA sequencing reactions on a robotic workstation. Biotechniques 1989;7:840-50.
13. Adessi C, Matton G, Ayala G, et al. Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res 2000;28:E87.
14. Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate. Science 1998;281:363, 5.
15. Bragg LM, Stone G, Butler MK, Hugenholtz P, Tyson GW. Shining a light on dark sequencing: characterising errors in Ion Torrent PGM data. PLoS Comput Biol 2013;9:e1003031.
16. Gharizadeh B, Akhras M, Nourizad N, et al. Methodological improvements of pyrosequencing technology. J Biotechnol 2006;124:504-11.
17. Frey KG, Herrera-Galeano JE, Redden CL, et al. Comparison of three next-generation sequencing platforms for metagenomic sequencing and identification of pathogens in blood. BMC Genomics 2014;15:96.
18. Payne A, Holmes N, Rakyan V, Loose M. BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files. Bioinformatics 2019;35:2193-8.
19. Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules. Science 2009;323:133-8.
20. Dohm JC, Peters P, Stralis-Pavese N, Himmelbauer H. Benchmarking of long-read correction methods. NAR Genom Bioinform 2020;2:lqaa037.
21. Zhang H, Jain C, Aluru S. A comprehensive evaluation of long read error correction methods. BMC Genomics 2020;21:889.
22. Sahlin K, Medvedev P. Error correction enables use of Oxford Nanopore technology for reference-free transcriptome analysis. Nat Commun 2021;12:2.
23. Leggett RM, Clark MD. A world of opportunities with nanopore sequencing. J Exp Bot 2017;68:5419-29.
24. Riesenfeld CS, Schloss PD, Handelsman J. Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 2004;38:525-52.
25. Spang A, Saw JH, Jørgensen SL, et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 2015;521:173-9.
26. Brown CT, Hug LA, Thomas BC, et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 2015;523:208-11.
27. Tyson GW, Chapman J, Hugenholtz P, et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 2004;428:37-43.
30. Alneberg J, Bjarnason BS, de Bruijn I, et al. Binning metagenomic contigs by coverage and composition. Nat Methods 2014;11:1144-6.
31. Nielsen HB, Almeida M, Juncker AS, et al. MetaHIT Consortium. , MetaHIT Consortium. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 2014;32:822-8.
32. Gregor I, Dröge J, Schirmer M, Quince C, McHardy AC. PhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes. PeerJ 2016;4:e1603.
33. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25:1043-55.
34. Bowers RM, Kyrpides NC, Stepanauskas R, et al. Genome Standards Consortium. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 2017;35:725-31.
35. Arumugam K, Bessarab I, Haryono MAS, et al. Recovery of complete genomes and non-chromosomal replicons from activated sludge enrichment microbial communities with long read metagenome sequencing. NPJ Biofilms Microbiomes 2021;7:23.
36. Lui LM, Nielsen TN, Arkin AP. A method for achieving complete microbial genomes and improving bins from metagenomics data. PLoS Comput Biol 2021;17:e1008972.
37. Vollmers J, Wiegand S, Kaster AK. Comparing and Evaluating Metagenome Assembly Tools from a Microbiologist's Perspective - Not Only Size Matters! PLoS One 2017;12:e0169662.
38. Chen LX, Anantharaman K, Shaiber A, Eren AM, Banfield JF. Accurate and complete genomes from metagenomes. Genome Res 2020;30:315-33.
39. Howe AC, Jansson JK, Malfatti SA, Tringe SG, Tiedje JM, Brown CT. Tackling soil diversity with the assembly of large, complex metagenomes. Proc Natl Acad Sci U S A 2014;111:4904-9.
40. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res 2017;27:824-34.
41. Namiki T, Hachiya T, Tanaka H, Sakakibara Y. MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res 2012;40:e155.
42. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674-6.
43. Segerman B. The Most Frequently Used Sequencing Technologies and Assembly Methods in Different Time Segments of the Bacterial Surveillance and RefSeq Genome Databases. Front Cell Infect Microbiol 2020;10:527102.
44. Yang C, Chowdhury D, Zhang Z, et al. A review of computational tools for generating metagenome-assembled genomes from metagenomic sequencing data. Comput Struct Biotechnol J 2021;19:6301-14.
45. Ayling M, Clark MD, Leggett RM. New approaches for metagenome assembly with short reads. Brief Bioinform 2020;21:584-94.
46. Anyansi C, Straub TJ, Manson AL, Earl AM, Abeel T. Computational Methods for Strain-Level Microbial Detection in Colony and Metagenome Sequencing Data. Front Microbiol 2020;11:1925.
47. Latorre-Pérez A, Villalba-Bermell P, Pascual J, Vilanova C. Assembly methods for nanopore-based metagenomic sequencing: a comparative study. Sci Rep 2020;10:13588.
48. Bertrand D, Shaw J, Kalathiyappan M, et al. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes. Nat Biotechnol 2019;37:937-44.
49. Moss EL, Maghini DG, Bhatt AS. Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat Biotechnol 2020;38:701-7.
50. Stepanauskas R, Fergusson EA, Brown J, et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat Commun 2017;8:84.
51. Dhorne-Pollet S, Barrey E, Pollet N. A new method for long-read sequencing of animal mitochondrial genomes: application to the identification of equine mitochondrial DNA variants. BMC Genomics 2020;21:785.
52. Barrick JE, Yu DS, Yoon SH, et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 2009;461:1243-7.
53. Pulido-Tamayo S, Sánchez-Rodríguez A, Swings T, et al. Frequency-based haplotype reconstruction from deep sequencing data of bacterial populations. Nucleic Acids Res 2015;43:e105.
54. Quince C, Delmont TO, Raguideau S, et al. DESMAN: a new tool for de novo extraction of strains from metagenomes. Genome Biol 2017;18:181.
55. Schloissnig S, Arumugam M, Sunagawa S, et al. Genomic variation landscape of the human gut microbiome. Nature 2013;493:45-50.
56. Crits-Christoph A, Olm MR, Diamond S, Bouma-Gregson K, Banfield JF. Soil bacterial populations are shaped by recombination and gene-specific selection across a grassland meadow. ISME J 2020;14:1834-46.
57. Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol 2021;39:1348-65.
58. Boev AS, Rakitko AS, Usmanov SR, et al. Genome assembly using quantum and quantum-inspired annealing. Sci Rep 2021;11:13183.
59. Alberts GJN, Rol MA, Last T, et al. Accelerating quantum computer developments. EPJ Quantum Technol 2021:8.