REFERENCES

1. Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 2018;16:567-76.

2. Wabnitz K, Gabrysch S, Guinto R, et al. A pledge for planetary health to unite health professionals in the Anthropocene. Lancet 2020;396:1471-3.

3. Trinh P, Zaneveld JR, Safranek S, Rabinowitz PM. One health relationships between human, animal, and environmental microbiomes: a mini-review. Front Public Health 2018;6:235.

4. Guerrero R, Margulis L, Berlanga M. Symbiogenesis: the holobiont as a unit of evolution. Int Microbiol 2013;16:133-43.

5. Moran NA, Ochman H, Hammer TJ. Evolutionary and ecological consequences of gut microbial communities. Annu Rev Ecol Evol Syst 2019;50:451-75.

6. Barribeau SM, Sadd BM, du Plessis L, et al. A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biol 2015;16:83.

7. Busby PE, Soman C, Wagner MR, et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 2017;15:e2001793.

8. Ramírez-Puebla ST, Servín-Garcidueñas LE, Jiménez-Marín B, et al. Gut and root microbiota commonalities. Appl Environ Microbiol 2013;79:2-9.

9. Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature 2017;548:43-51.

10. CERIS. National Pesticide Information Retrieval System. Available from: http://npirspublic.ceris.purdue.edu/ppis [Last accessed on 25 Jan 2022].

11. Prescott SL, Wegienka G, Logan AC, Katz DL. Dysbiotic drift and biopsychosocial medicine: how the microbiome links personal, public and planetary health. Biopsychosoc Med 2018;12:7.

12. FAO. Pesticide use. Global, regional and country trends 1990-2018. Available from: https://fao.org/documents/card/en/c/cb3411en/ [Last accessed on 25 Jan 2022].

13. Blaser MJ. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat Rev Immunol 2017;17:461-3.

14. Musso G, Gambino R, Cassader M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care 2010;33:2277-84.

15. Daisley BA, Koenig D, Engelbrecht K, et al. Emerging connections between gut microbiome bioenergetics and chronic metabolic diseases. Cell Rep 2021;37:110087.

16. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol 2019;4:293-305.

17. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012;490:55-60.

18. Liu R, Hong J, Xu X, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med 2017;23:859-68.

19. Jie Z, Xia H, Zhong SL, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 2017;8:845.

20. Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V, Wargo JA. The microbiome, cancer, and cancer therapy. Nat Med 2019;25:377-88.

21. Johnson RM, Ellis MD, Mullin CA, Frazier M. Pesticides and honey bee toxicity - USA. Apidologie 2010;41:312-31.

22. Rani L, Thapa K, Kanojia N, et al. An extensive review on the consequences of chemical pesticides on human health and environment. J Clean Prod 2021;283:124657.

23. Köhler HR, Triebskorn R. Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 2013;341:759-65.

24. Sharma A, Kumar V, Shahzad B, et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci 2019;1:1446.

25. . EPA. Pesticide Registration Process. Environ Prot Agency 2021. Available from: https://epa.gov/pesticide-science-and-assessing-pesticide-risks/overview-risk-assessment-pesticide-program [Last accessed on 25 Jan 2022]

26. eCFR. Protection of Environment. Code Fed Regul 2013. Available from: https://www.ecfr.gov/current/title-40 [Last accessed on 29 November 2021].

27. Trudgill PW, Widdus R, Rees JS. Effects of organochlorine insecticides on bacterial growth, respiration and viability. J Gen Microbiol 1971;69:1-13.

28. Bollen WB, Morrison HE, Crowell HH. Effect of field and laboratory treatments with BHC and DDT on nitrogen transformations and soil respiration1. J Econ Entomol 1954;47:307-12.

29. Nogrado K, Lee S, Chon K, Lee J. Effect of transient exposure to carbaryl wettable powder on the gut microbial community of honey bees. Appl Biol Chem 2019;62:6.

30. Khoury S, Gauthier J, Bouslama S, Cheaib B, Giovenazzo P, Derome N. Dietary contamination with a neonicotinoid (Clothianidin) gradient triggers specific dysbiosis signatures of microbiota activity along the honeybee (Apis mellifera) digestive tract. Microorganisms 2021;9:2283.

31. Raymann K, Motta EVS, Girard C, Riddington IM, Dinser JA, Moran NA. Imidacloprid decreases honey bee survival rates but does not affect the gut microbiome. Appl Environ Microbiol 2018;84:e00545-18.

32. Cycoń M, Piotrowska-Seget Z. Community structure of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in soil treated with the insecticide imidacloprid. Biomed Res Int 2015;2015:582938.

33. Mahapatra B, Adak T, Patil NKB, et al. Imidacloprid application changes microbial dynamics and enzymes in rice soil. Ecotoxicol Environ Saf 2017;144:123-30.

34. Alberoni D, Favaro R, Baffoni L, Angeli S, Di Gioia D. Neonicotinoids in the agroecosystem: In-field long-term assessment on honeybee colony strength and microbiome. Sci Total Environ 2021;762:144116.

35. Zhao Y, Jiang H, Cheng X, et al. Neonicotinoid thiacloprid transformation by the N2-fixing bacterium Microvirga flocculans CGMCC 1.16731 and toxicity of the amide metabolite. Int Biodeterior Biodegrad 2019;145:104806.

36. Zhu L, Qi S, Xue X, Niu X, Wu L. Nitenpyram disturbs gut microbiota and influences metabolic homeostasis and immunity in honey bee (Apis mellifera L.). Environ Pollut 2020;258:113671.

37. Fox JE, Starcevic M, Kow KY, Burow ME, McLachlan JA. Nitrogen fixation. Endocrine disrupters and flavonoid signalling. Nature 2001;413:128-9.

38. Santoro PH, Cavaguchi SA, Alexandre TM, Zorzetti J, Neves PMOJ. In vitro sensitivity of antagonistic Trichoderma atroviride to herbicides. Braz arch biol technol 2014;57:238-43.

39. Motta EVS, Raymann K, Moran NA. Glyphosate perturbs the gut microbiota of honey bees. Proc Natl Acad Sci U S A 2018;115:10305-10.

40. Fernandez M, Zentner R, Basnyat P, Gehl D, Selles F, Huber D. Glyphosate associations with cereal diseases caused by Fusarium spp. in the Canadian Prairies. Eur J Agron 2009;31:133-43.

41. Khan S, Shahid M, Khan MS, et al. Fungicide-tolerant plant growth-promoting rhizobacteria mitigate physiological disruption of white radish caused by fungicides used in the field cultivation. Int J Environ Res Public Health 2020;17:7251.

42. Fravel D, Deahl K, Stommel J. Compatibility of the biocontrol fungus Fusarium oxysporum strain CS-20 with selected fungicides. Biological Control 2005;34:165-9.

43. Kakumanu ML, Reeves AM, Anderson TD, Rodrigues RR, Williams MA. Honey bee gut microbiome is altered by in-hive pesticide exposures. Front Microbiol 2016;7:1255.

44. Degrandi-hoffman G, Corby-harris V, Dejong EW, Chambers M, Hidalgo G. Honey bee gut microbial communities are robust to the fungicide Pristine® consumed in pollen. Apidologie 2017;48:340-52.

45. Mustard JA, Jones L, Wright GA. GABA signaling affects motor function in the honey bee. J Insect Physiol 2020;120:103989.

46. MacRae IC, Raghu K, Castro TF. Persistence and biodegradation of four common isomers of benzene hexachloride in submerged soils. J Agric Food Chem 1967;15:911-4.

47. Gray PHH. Effects of benzene hexachloride on soil micro-organisms. Can J Bot 1954;32:1-9.

48. Shahid M, Manoharadas S, Altaf M, Alrefaei AF. Organochlorine pesticides negatively influenced the cellular growth, morphostructure, cell viability, and biofilm-formation and phosphate-solubilization activities of Enterobacter cloacae strain EAM 35. ACS Omega 2021;6:5548-59.

49. Quillin SJ, Tran P, Prindle A. Potential roles for gamma-aminobutyric acid signaling in bacterial communities. Bioelectricity 2021;3:120-5.

50. Strandwitz P, Kim KH, Terekhova D, et al. GABA-modulating bacteria of the human gut microbiota. Nat Microbiol 2019;4:396-403.

51. Zadoks J, Waibel H. From pesticides to genetically modified plants: history, economics and politics. NJAS - Wagening J Life Sci 2000;48:125-49.

52. Mullin CA, Frazier M, Frazier JL, et al. High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 2010;5:e9754.

53. Yoder JA, Jajack AJ, Rosselot AE, Smith TJ, Yerke MC, Sammataro D. Fungicide contamination reduces beneficial fungi in bee bread based on an area-wide field study in honey bee, Apis mellifera, colonies. J Toxicol Environ Health A 2013;76:587-600.

54. Park MG, Blitzer EJ, Gibbs J, Losey JE, Danforth BN. Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proc Biol Sci 2015;282:20150299.

55. Bernauer OM, Gaines-Day HR, Steffan SA. Colonies of bumble bees (Bombus impatiens) produce fewer workers, less bee biomass, and have smaller mother queens following fungicide exposure. Insects 2015;6:478-88.

56. Evison SE, Jensen AB. The biology and prevalence of fungal diseases in managed and wild bees. Curr Opin Insect Sci 2018;26:105-13.

57. Paludo CR, Menezes C, Silva-Junior EA, et al. Stingless bee larvae require fungal steroid to pupate. Sci Rep 2018;8:1122.

58. Traynor KS, Pettis JS, Tarpy DR, et al. In-hive Pesticide Exposome: Assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States. Sci Rep 2016;6:33207.

59. Steffan SA, Dharampal PS, Diaz-Garcia L, Currie CR, Zalapa J, Hittinger CT. Empirical, metagenomic, and computational techniques illuminate the mechanisms by which fungicides compromise bee health. J Vis Exp 2017; doi: 10.3791/54631.

60. Paris L, Peghaire E, Moné A, et al. Honeybee gut microbiota dysbiosis in pesticide/parasite co-exposures is mainly induced by Nosema ceranae. J Invertebr Pathol 2020;172:107348.

61. Hsu CK, Wang DY, Wu MC. A potential fungal probiotic Aureobasidium melanogenum CK-CsC for the Western honey bee, Apis mellifera. J Fungi (Basel) 2021;7:508.

62. Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant-microbiome interactions: from community assembly to plant health. Nat Rev Microbiol 2020;18:607-21.

63. van Tilburg Bernardes E, Pettersen VK, Gutierrez MW, et al. Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat Commun 2020;11:2577.

64. Jackson CJ, Lamb DC, Kelly DE, Kelly SL. Bactericidal and inhibitory effects of azole antifungal compounds on Mycobacterium smegmatis. FEMS Microbiol Lett 2000;192:159-62.

65. Syromyatnikov MY, Isuwa MM, Savinkova OV, Derevshchikova MI, Popov VN. The effect of pesticides on the microbiome of animals. Agriculture 2020;10:79.

66. Motta EVS, Mak M, De Jong TK, et al. Oral or topical exposure to glyphosate in herbicide formulation impacts the gut microbiota and survival rates of honey bees. Appl Environ Microbiol 2020;86:e01150-20.

67. Blot N, Veillat L, Rouzé R, Delatte H. Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota. PLoS One 2019;14:e0215466.

68. Horak RD, Leonard SP, Moran NA. Symbionts shape host innate immunity in honeybees. Proc Biol Sci 2020;287:20201184.

69. Castelli L, Balbuena S, Branchiccela B, et al. Impact of chronic exposure to sublethal doses of glyphosate on honey bee immunity, gut microbiota and infection by pathogens. Microorganisms 2021;9:845.

70. Helander M, Saloniemi I, Omacini M, Druille M, Salminen JP, Saikkonen K. Glyphosate decreases mycorrhizal colonization and affects plant-soil feedback. Sci Total Environ 2018;642:285-91.

71. Van Bruggen AHC, He MM, Shin K, et al. Environmental and health effects of the herbicide glyphosate. Sci Total Environ 2018;616-617:255-68.

72. Schlatter DC, Yin C, Hulbert S, Burke I, Paulitz T. Impacts of repeated glyphosate use on wheat-associated bacteria are small and depend on glyphosate use history. Appl Environ Microbiol 2017;83:e01354-17.

73. Ramirez-Villacis DX, Finkel OM, Salas-González I, et al. Root microbiome modulates plant growth promotion induced by low doses of glyphosate. mSphere 2020;5:e00484-20.

74. Nguyen DB, Rose MT, Rose TJ, Morris SG, van Zwieten L. Impact of glyphosate on soil microbial biomass and respiration: a meta-analysis. Soil Biol Biochem 2016;92:50-7.

75. Ramakrishnan B, Maddela NR, Venkateswarlu K, Megharaj M. Linkages between plant rhizosphere and animal gut environments: interaction effects of pesticides with their microbiomes. Environ Adv 2021;5:100091.

76. Goulson D. The insect apocalypse, and why it matters. Curr Biol 2019;29:R967-71.

77. Sánchez-Bayo F. Environmental science. The trouble with neonicotinoids. Science 2014;346:806-7.

78. Tsvetkov N, Samson-Robert O, Sood K, et al. Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science 2017;356:1395-7.

79. Macías-Macías JO, Tapia-Rivera JC, De la Mora A, et al. Nosema ceranae causes cellular immunosuppression and interacts with thiamethoxam to increase mortality in the stingless bee Melipona colimana. Sci Rep 2020;10:17021.

80. Jones JC, Fruciano C, Hildebrand F, et al. Gut microbiota composition is associated with environmental landscape in honey bees. Ecol Evol 2018;8:441-51.

81. Mason R, Tennekes H, Sánchez-Bayo F, Jepsen P. Immune suppression by neonicotinoid insecticides at the root of global wildlife declines. J Environ Immunol Toxicol 2013;1:3-12.

82. Chmiel JA, Daisley BA, Burton JP, Reid G. Deleterious effects of neonicotinoid pesticides on drosophila melanogaster immune pathways. mBio 2019;10:e01395-19.

83. Daisley BA, Trinder M, McDowell TW, et al. Neonicotinoid-induced pathogen susceptibility is mitigated by Lactobacillus plantarum immune stimulation in a Drosophila melanogaster model. Sci Rep 2017;7:2703.

84. Kwong WK, Mancenido AL, Moran NA. Immune system stimulation by the native gut microbiota of honey bees. R Soc Open Sci 2017;4:170003.

85. Daisley BA, Pitek AP, Chmiel JA, et al. Lactobacillus spp. attenuate antibiotic-induced immune and microbiota dysregulation in honey bees. Commun Biol 2020;3:534.

86. Woodcock BA, Bullock JM, Shore RF, et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 2017;356:1393-5.

87. Lisuma JB, Mbega ER, Ndakidemi PA. Influence of nicotine released in soils to the growth of subsequent maize crop, soil bacteria and fungi. Int J Agric Biol 2019;22:1-12.

88. Wulff JA, Kiani M, Regan K, Eubanks MD, Szczepaniec A. Neonicotinoid insecticides alter the transcriptome of soybean and decrease plant resistance. Int J Mol Sci 2019;20:783.

89. Cycoń M, Piotrowska-Seget Z. Biochemical and microbial soil functioning after application of the insecticide imidacloprid. J Environ Sci (China) 2015;27:147-58.

90. Bonmatin JM, Giorio C, Girolami V, et al. Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res Int 2015;22:35-67.

91. Zhou GC, Wang Y, Zhai S, et al. Biodegradation of the neonicotinoid insecticide thiamethoxam by the nitrogen-fixing and plant-growth-promoting rhizobacterium Ensifer adhaerens strain TMX-23. Appl Microbiol Biotechnol 2013;97:4065-74.

92. Lu TQ, Mao SY, Sun SL, Yang WL, Ge F, Dai YJ. Regulation of hydroxylation and nitroreduction pathways during metabolism of the neonicotinoid insecticide imidacloprid by pseudomonas putida. J Agric Food Chem 2016;64:4866-75.

93. Mohammed YMM, Badawy MEI. Biodegradation of imidacloprid in liquid media by an isolated wastewater fungus Aspergillus terreus YESM3. J Environ Sci Health B 2017;52:752-61.

94. Pang S, Lin Z, Zhang W, Mishra S, Bhatt P, Chen S. Insights into the microbial degradation and biochemical mechanisms of neonicotinoids. Front Microbiol 2020;11:868.

95. Shahid M, Khan MS, Ahmed B, Syed A, Bahkali AH. Physiological disruption, structural deformation and low grain yield induced by neonicotinoid insecticides in chickpea: A long term phytotoxicity investigation. Chemosphere 2021;262:128388.

96. Douglas MR, Rohr JR, Tooker JF, Kaplan I. EDITOR’S CHOICE: Neonicotinoid insecticide travels through a soil food chain, disrupting biological control of non-target pests and decreasing soya bean yield. J Appl Ecol 2015;52:250-60.

97. Myresiotis CK, Vryzas Z, Papadopoulou-Mourkidou E. Effect of specific plant-growth-promoting rhizobacteria (PGPR) on growth and uptake of neonicotinoid insecticide thiamethoxam in corn (Zea mays L.) seedlings. Pest Manag Sci 2015;71:1258-66.

98. Flores-Céspedes F, González-Pradas E, Fernández-Pérez M, Villafranca-Sánchez M, Socías-Viciana M, Ureña-Amate MD. Effects of dissolved organic carbon on sorption and mobility of imidacloprid in soil. J Environ Qual 2002;31:880-8.

99. Oi M. Time-dependent sorption of imidacloprid in two different soils. J Agric Food Chem 1999;47:327-32.

100. Suchail S, Guez D, Belzunces LP. Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in. Apis mellifera ;20:2482-6.

101. Daisley BA, Trinder M, McDowell TW, Collins SL, Sumarah MW, Reid G. Microbiota-mediated modulation of organophosphate insecticide toxicity by species-dependent interactions with lactobacilli in a drosophila melanogaster insect model. Appl Environ Microbiol 2018;84:e02820-17.

102. Xia X, Zheng D, Zhong H, et al. DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS One 2013;8:e68852.

103. Lukwinski AT, Hill JE, Khachatourians GG, Hemmingsen SM, Hegedus DD. Biochemical and taxonomic characterization of bacteria associated with the crucifer root maggot (Delia radicum). Can J Microbiol 2006;52:197-208.

104. Engel P, Moran NA. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev 2013;37:699-735.

105. Almeida LG, Moraes LA, Trigo JR, Omoto C, Cônsoli FL. The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: a potential source for biotechnological exploitation. PLoS One 2017;12:e0174754.

106. French E, Kaplan I, Iyer-Pascuzzi A, Nakatsu CH, Enders L. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat Plants 2021;7:256-67.

107. Erler S, Denner A, Bobiş O, Forsgren E, Moritz RF. Diversity of honey stores and their impact on pathogenic bacteria of the honeybee, Apis mellifera. Ecol Evol 2014;4:3960-7.

108. Blacquière T, Smagghe G, van Gestel CA, Mommaerts V. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 2012;21:973-92.

109. Cullen MG, Thompson LJ, Carolan JC, Stout JC, Stanley DA. Fungicides, herbicides and bees: a systematic review of existing research and methods. PLoS One 2019;14:e0225743.

110. Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 2011;20:619-28.

111. Daisley BA, Reid G. BEExact: a metataxonomic database tool for high-resolution inference of bee-associated microbial communities. mSystems 2021;6:e00082-21.

112. Kwong WK, Medina LA, Koch H, et al. Dynamic microbiome evolution in social bees. Sci Adv 2017;3:e1600513.

113. Kwong WK, Moran NA. Gut microbial communities of social bees. Nat Rev Microbiol 2016;14:374-84.

114. Jones JC, Fruciano C, Marchant J, et al. The gut microbiome is associated with behavioural task in honey bees. Insectes Soc 2018;65:419-29.

115. Liberti J, Engel P. The gut microbiota - brain axis of insects. Curr Opin Insect Sci 2020;39:6-13.

116. Koch H, Brown MJ, Stevenson PC. The role of disease in bee foraging ecology. Curr Opin Insect Sci 2017;21:60-7.

117. Decourtye A, Lacassie E, Pham-Delègue MH. Learning performances of honeybees (Apis mellifera L) are differentially affected by imidacloprid according to the season. Pest Manag Sci 2003;59:269-78.

118. Kešnerová L, Emery O, Troilo M, Liberti J, Erkosar B, Engel P. Gut microbiota structure differs between honeybees in winter and summer. ISME J 2020;14:801-14.

119. Chmiel JA, Daisley BA, Pitek AP, Thompson GJ, Reid G. Understanding the effects of sublethal pesticide exposure on honey bees: a role for probiotics as mediators of environmental stress. Front Ecol Evol 2020;8:22.

120. Robinson GE. Regulation of division of labor in insect societies. Annu Rev Entomol 1992;37:637-65.

121. Nouvian M, Reinhard J, Giurfa M. The defensive response of the honeybee Apis mellifera. J Exp Biol 2016;219:3505-17.

122. Martin CR, Osadchiy V, Kalani A, Mayer EA. The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol 2018;6:133-48.

123. Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 2016;14:320-30.

124. Ramakrishnan B, Venkateswarlu K, Sethunathan N, Megharaj M. Local applications but global implications: can pesticides drive microorganisms to develop antimicrobial resistance? Sci Total Environ 2019;654:177-89.

125. Blanco P, Hernando-Amado S, Reales-Calderon JA, et al. Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms 2016;4:14.

126. Kurenbach B, Marjoshi D, Amábile-Cuevas CF, et al. Sublethal exposure to commercial formulations of the herbicides dicamba, 2,4-dichlorophenoxyacetic acid, and glyphosate cause changes in antibiotic susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium. mBio 2015;6:e00009-15.

127. Fraise AP. Biocide abuse and antimicrobial resistance--a cause for concern? J Antimicrob Chemother 2002;49:11-2.

128. Xing Y, Wu S, Men Y. Exposure to environmental levels of pesticides stimulates and diversifies evolution in Escherichia coli toward higher antibiotic resistance. Environ Sci Technol 2020;54:8770-8.

129. Rangasamy K, Athiappan M, Devarajan N, Parray JA. Emergence of multi drug resistance among soil bacteria exposing to insecticides. Microb Pathog 2017;105:153-65.

130. Harper LL, McDaniel CS, Miller CE, Wild JR. Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contain identical opd genes. Appl Environ Microbiol 1988;54:2586-9.

131. Horne I, Sutherland TD, Harcourt RL, Russell RJ, Oakeshott JG. Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl Environ Microbiol 2002;68:3371-6.

132. Mulbry WW, Karns JS. Parathion hydrolase specified by the Flavobacterium opd gene: relationship between the gene and protein. J Bacteriol 1989;171:6740-6.

133. Singh BK. Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 2009;7:156-64.

134. Utembe W, Kamng’ona AW. Gut microbiota-mediated pesticide toxicity in humans: Methodological issues and challenges in the risk assessment of pesticides. Chemosphere 2021;271:129817.

135. McDonald JA, Schroeter K, Fuentes S, et al. Evaluation of microbial community reproducibility, stability and composition in a human distal gut chemostat model. J Microbiol Methods 2013;95:167-74.

136. . Van de Wiele T, Van den Abbeele P, Ossieur W, Possemiers S, Marzorati M. The Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). In: Verhoeckx K, Cotter P, López-expósito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H, editors. The Impact of Food Bioactives on Health. Cham: Springer International Publishing; 2015. p. 305-17.

137. Daisley BA, Chanyi RM, Abdur-Rashid K, et al. Abiraterone acetate preferentially enriches for the gut commensal Akkermansia muciniphila in castrate-resistant prostate cancer patients. Nat Commun 2020;11:4822.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/