REFERENCES

1. Yarza P, Yilmaz P, Pruesse E, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014;12:635-45.

2. Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 2019;17:95-109.

3. Ragupathi NK, Muthuirulandi Sethuvel DP, Inbanathan FY, Veeraraghavan B. Accurate differentiation of Escherichia coli and Shigella serogroups: challenges and strategies. New Microbes New Infect 2018;21:58-62.

4. Milani C, Lugli GA, Turroni F, et al. Evaluation of bifidobacterial community composition in the human gut by means of a targeted amplicon sequencing (ITS) protocol. FEMS Microbiol Ecol 2014;90:493-503.

5. Wagner J, Coupland P, Browne HP, Lawley TD, Francis SC, Parkhill J. Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification. BMC Microbiol 2016;16:274.

6. Caruso V, Song X, Asquith M, Karstens L. Performance of microbiome sequence inference methods in environments with varying biomass. mSystems 2019;4:e00163-18.

7. Conrads G, Abdelbary MMH. Challenges of next-generation sequencing targeting anaerobes. Anaerobe 2019;58:47-52.

8. Park C, Kim SB, Choi SH, Kim S. Comparison of 16S rRNA gene based microbial profiling using five next-generation sequencers and various primers. Front Microbiol 2021;12:715500.

9. Pérez-Cobas AE, Gomez-Valero L, Buchrieser C. Metagenomic approaches in microbial ecology: an update on whole-genome and marker gene sequencing analyses. Microb Genom 2020;6:mgen000409.

10. Lugli GA, Alessandri G, Milani C, et al. Genetic insights into the dark matter of the mammalian gut microbiota through targeted genome reconstruction. Environ Microbiol 2021;23:3294-305.

11. Beaudry MS, Wang J, Kieran TJ, et al. Improved microbial community characterization of 16S rRNA via metagenome hybridization capture enrichment. Front Microbiol 2021;12:644662.

12. Hillmann B, Al-Ghalith GA, Shields-Cutler RR, et al. Evaluating the information content of shallow shotgun metagenomics. mSystems 2018;3:e00069-18.

13. Milani C, Lugli GA, Fontana F, et al. METAnnotatorX2: a Comprehensive tool for deep and shallow metagenomic data set analyses. mSystems 2021;6:e0058321.

14. Lugli GA, Milani C, Mancabelli L, Turroni F, van Sinderen D, Ventura M. A microbiome reality check: limitations of in silico-based metagenomic approaches to study complex bacterial communities. Environ Microbiol Rep 2019;11:840-7.

15. Ye SH, Siddle KJ, Park DJ, Sabeti PC. Benchmarking metagenomics tools for taxonomic classification. Cell 2019;178:779-94.

16. Bernard G, Pathmanathan JS, Lannes R, Lopez P, Bapteste E. Microbial darkmatter investigations: Howmicrobial studies transform biological knowledge and empirically sketch a logic of scientific discovery. Genome Biol Evol 2018;10:707-15.

17. Rahi P, Prakash O, Shouche YS. Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based microbial identifications: challenges and scopes for microbial ecologists. Front Microbiol 2016;7:1359.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/