REFERENCES

1. Liu L, Wang J, Rosenberg D, Zhao H, Lengyel G, Nadel D. Fermented beverage and food storage in 13,000 y-old stone mortars at Raqefet Cave, Israel: Investigating Natufian ritual feasting. J Archaeol Sci Reports 2018;21:783-93.

2. Tamang JP, Cotter PD, Endo A, et al. Fermented foods in a global age: East meets West. Compr Rev Food Sci Food Saf 2020;19:184-217.

3. Tamang JP, Watanabe K, Holzapfel WH. Review: diversity of microorganisms in global fermented foods and beverages. Front Microbiol 2016;7:377.

4. Galimberti A, Bruno A, Agostinetto G, Casiraghi M, Guzzetti L, Labra M. Fermented food products in the era of globalization: tradition meets biotechnology innovations. Curr Opin Biotechnol 2021;70:36-41.

5. Rezac S, Kok CR, Heermann M, Hutkins R. Fermented foods as a dietary source of live organisms. Front Microbiol 2018;9:1785.

6. Marco ML, Heeney D, Binda S, et al. Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol 2017;44:94-102.

7. Terefe NS. Food fermentation. In: Smithers G, editor. Reference module in food science. Elsevier; 2016. p. 1-3.

8. Conte M, Porpora M, Nigro F, et al. Pro-pre and postbiotic in celiac disease. Appl Sci 2021;11:8185.

9. Gobbetti M, De Angelis M, Di Cagno R, Mancini L, Fox PF. Pros and cons for using non-starter lactic acid bacteria (NSLAB) as secondary/adjunct starters for cheese ripening. Trends Food Sci Technol 2015;45:167-78.

10. Vinicius De Melo Pereira G, De Carvalho Neto DP, Junqueira ACDO, et al. A review of selection criteria for starter culture development in the food fermentation industry. Food Rev Int 2020;36:135-67.

11. Mahony J, Moscarelli A, Kelleher P, et al. Phage biodiversity in artisanal cheese Wheys reflects the complexity of the fermentation process. Viruses 2017;9:45.

12. Andrighetto C, Borney F, Barmaz A, Stefanon B, Lombardi A. Genetic diversity of Streptococcus thermophilus strains isolated from Italian traditional cheeses. Int Dairy J 2002;12:141-4.

13. Lu Z, Pérez-Díaz IM, Hayes JS, Breidt F. Bacteriophage ecology in a commercial cucumber fermentation. Appl Environ Microbiol 2012;78:8571-8.

14. McGrath S, Fitzgerald G, van Sinderen D. Starter cultures: bacteriophages. In: Fox P, McSweeney P, Cogan T, Guinee T, editors. Cheese: chemistry, physics and microbiology. Academic Press; 2004. p. 163-90.

15. Bockelmann W. Development of defined surface starter cultures for the ripening of smear cheeses. Int Dairy J 2002;12:123-31.

16. Nambou K, Gao C, Zhou F, Guo B, Ai L, Wu Z. A novel approach of direct formulation of defined starter cultures for different kefir-like beverage production. Int Dairy J 2014;34:237-46.

17. Pujato SA, Quiberoni A, Mercanti DJ. Bacteriophages on dairy foods. J Appl Microbiol 2019;126:14-30.

18. Spus M, Li M, Alexeeva S, et al. Strain diversity and phage resistance in complex dairy starter cultures. J Dairy Sci 2015;98:5173-82.

19. Pujato SA, Mercanti DJ, Guglielmotti DM, et al. Phages of dairy Leuconostoc mesenteroides: genomics and factors influencing their adsorption. Int J Food Microbiol 2015;201:58-65.

20. Lavelle K, Martinez I, Neve H, et al. Biodiversity of Streptococcus thermophilus phages in global dairy fermentations. Viruses 2018;10:577.

21. Deveau H, Labrie SJ, Chopin MC, Moineau S. Biodiversity and classification of lactococcal phages. Appl Environ Microbiol 2006;72:4338-46.

22. Zrelovs N, Dislers A, Kazaks A. Genome characterization of nocturne116, novel Lactococcus lactis-infecting phage isolated from moth. Microorganisms 2021;9:1540.

23. Mahony J, Oliveira J, Collins B, et al. Genetic and functional characterisation of the lactococcal P335 phage-host interactions. BMC Genomics 2017;18:146.

24. Mahony J, Murphy J, van Sinderen D. Lactococcal 936-type phages and dairy fermentation problems: from detection to evolution and prevention. Front Microbiol 2012;3:335.

25. Mahony J, Deveau H, Mc Grath S, et al. Sequence and comparative genomic analysis of lactococcal bacteriophages jj50, 712 and P008: evolutionary insights into the 936 phage species. FEMS Microbiol Lett 2006;261:253-61.

26. Hayes S, Mahony J, Vincentelli R, et al. Ubiquitous carbohydrate binding modules decorate 936 lactococcal siphophage virions. Viruses 2019;11:631.

27. Oliveira J, Mahony J, Hanemaaijer L, Kouwen TRHM, van Sinderen D. Biodiversity of bacteriophages infecting Lactococcus lactis starter cultures. J Dairy Sci 2018;101:96-105.

28. Kelly WJ, Altermann E, Lambie SC, Leahy SC. Interaction between the genomes of Lactococcus lactis and phages of the P335 species. Front Microbiol 2013;4:257.

29. Durmaz E, Madsen SM, Israelsen H, Klaenhammer TR. Lactococcus lactis lytic bacteriophages of the P335 group are inhibited by overexpression of a truncated CI repressor. J Bacteriol 2002;184:6532-44.

30. Madsen SM, Mills D, Djordjevic G, Israelsen H, Klaenhammer TR. Analysis of the genetic switch and replication region of a P335-type bacteriophage with an obligate lytic lifestyle on Lactococcus lactis. Appl Environ Microbiol 2001;67:1128-39.

31. Quiberoni A, Tremblay D, Ackermann H, Moineau S, Reinheimer J. Diversity of streptococcus thermophilus phages in a large-production cheese factory in argentina. J Dairy Sci 2006;89:3791-9.

32. Lavelle K, Murphy J, Fitzgerald B, et al. A decade of streptococcus thermophilus phage evolution in an Irish dairy plant. Appl Environ Microbiol 2018;84:e02855-17.

33. Brussow H, Fremont M, Bruttin A, Sidoti J, Constable A, Fryder V. Detection and classification of Streptococcus thermophilus bacteriophages isolated from industrial milk fermentation. Appl Environ Microbiol 1994;60:4537-43.

34. Hanemaaijer L, Kelleher P, Neve H, et al. Biodiversity of phages infecting the dairy bacterium Streptococcus thermophilus. Microorganisms 2021;9:1822.

35. Quiberoni A, Moineau S, Rousseau GM, Reinheimer J, Ackermann H. Streptococcus thermophilus bacteriophages. Int Dairy J 2010;20:657-64.

36. Szymczak P, Janzen T, Neves AR, et al. Novel variants of Streptococcus thermophilus bacteriophages are indicative of genetic recombination among phages from different bacterial species. Appl Environ Microbiol 2017;83:e02748-16.

37. Mills S, Griffin C, O’sullivan O, et al. A new phage on the ‘Mozzarella’ block: Bacteriophage 5093 shares a low level of homology with other Streptococcus thermophilus phages. Int Dairy J 2011;21:963-9.

38. McDonnell B, Mahony J, Neve H, et al. Identification and analysis of a novel Group of Bacteriophages Infecting the Lactic Acid Bacterium Streptococcus thermophilus. Appl Environ Microbiol 2016;82:5153-65.

39. Le Marrec C, van Sinderen D, Walsh L, et al. Two groups of bacteriophages infecting Streptococcus thermophilus can be distinguished on the basis of mode of packaging and genetic determinants for major structural proteins. Appl Environ Microbiol 1997;63:3246-53.

40. Alexandraki V, Kazou M, Blom J, Pot B, Papadimitriou K, Tsakalidou E. Comparative genomics of Streptococcus thermophilus support important traits concerning the evolution, biology and technological properties of the species. Front Microbiol 2019;10:2916.

41. Carminati D, Giraffa G. Evidence and characterization of temperate bacteriophage in Streptococcus salivarius subsp. thermophilus St18. J Dairy Res 1992;59:71-9.

42. Vinga I, Baptista C, Auzat I, et al. Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection. Mol Microbiol 2012;83:289-303.

43. Dieterle ME, Fina Martin J, Durán R, et al. Characterization of prophages containing “evolved” Dit/Tal modules in the genome of Lactobacillus casei BL23. Appl Microbiol Biotechnol 2016;100:9201-15.

44. Dupont K, Janzen T, Vogensen FK, Josephsen J, Stuer-Lauridsen B. Identification of Lactococcus lactis genes required for bacteriophage adsorption. Appl Environ Microbiol 2004;70:5825-32.

45. Legrand P, Collins B, Blangy S, et al. The atomic structure of the phage Tuc2009 baseplate tripod suggests that host recognition involves two different carbohydrate binding modules. mBio 2016;7:e01781-15.

46. Farenc C, Spinelli S, Vinogradov E, et al. Molecular insights on the recognition of a Lactococcus lactis cell wall pellicle by the phage 1358 receptor binding protein. J Virol 2014;88:7005-15.

47. Mahony J, Randazzo W, Neve H, Settanni L, van Sinderen D. Lactococcal 949 group phages recognize a carbohydrate receptor on the host cell surface. Appl Environ Microbiol 2015;81:3299-305.

48. Villion M, Chopin MC, Deveau H, Ehrlich SD, Moineau S, Chopin A. P087, a lactococcal phage with a morphogenesis module similar to an Enterococcus faecalis prophage. Virology 2009;388:49-56.

49. Marcelli B, de Jong A, Karsens H, Janzen T, Kok J, Kuipers OP. A specific sugar moiety in the Lactococcus lactis cell wall pellicle is required for infection by CHPC971, a member of the rare 1706 phage species. Appl Environ Microbiol 2019;85:e01224-19.

50. Valyasevi R, Sandine WE, Geller BL. A membrane protein is required for bacteriophage c2 infection of Lactococcus lactis subsp. lactis C2. J Bacteriol 1991;173:6095-100.

51. Monteville MR, Ardestani B, Geller BL. Lactococcal bacteriophages require a host cell wall carbohydrate and a plasma membrane protein for adsorption and ejection of DNA. Appl Environ Microbiol 1994;60:3204-11.

52. Derkx PM, Janzen T, Sørensen KI, Christensen JE, Stuer-Lauridsen B, Johansen E. The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology. Microb Cell Fact 2014;13 Suppl 1:S5.

53. Szymczak P, Filipe SR, Covas G, Vogensen FK, Neves AR, Janzen T. Cell wall glycans mediate recognition of the dairy bacterium Streptococcus thermophilus by bacteriophages. Appl Environ Microbiol 2018;84:e01847-18.

54. McDonnell B, Mahony J, Hanemaaijer L, et al. Global survey and genome exploration of bacteriophages infecting the lactic acid bacterium Streptococcus thermophilus. Front Microbiol 2017;8:1754.

55. Lavelle K, Goulet A, McDonnell B, et al. Revisiting the host adhesion determinants of Streptococcus thermophilus siphophages. Microb Biotechnol 2020;13:1765-79.

56. McDonnell B, Hanemaaijer L, Bottacini F, et al. A cell wall-associated polysaccharide is required for bacteriophage adsorption to the Streptococcus thermophilus cell surface. Mol Microbiol 2020;114:31-45.

57. Räisänen L, Schubert K, Jaakonsaari T, Alatossava T. Characterization of lipoteichoic acids as Lactobacillus delbrueckii phage receptor components. J Bacteriol 2004;186:5529-32.

58. Kot W, Neve H, Heller KJ, Vogensen FK. Bacteriophages of leuconostoc, oenococcus, and weissella. Front Microbiol 2014;5:186.

59. Mahony J, Cambillau C, van Sinderen D. Host recognition by lactic acid bacterial phages. FEMS Microbiol Rev 2017;41:S16-26.

60. Collins B, Bebeacua C, Mahony J, et al. Structure and functional analysis of the host recognition device of lactococcal phage tuc2009. J Virol 2013;87:8429-40.

61. Chmielewska-Jeznach M, Bardowski JK, Szczepankowska AK. Lactococcus ceduovirus phages isolated from industrial dairy plants-from physiological to genomic analyses. Viruses 2020;12:280.

62. Mahony J, Frantzen C, Vinogradov E, et al. The CWPS Rubik’s cube: linking diversity of cell wall polysaccharide structures with the encoded biosynthetic machinery of selected Lactococcus lactis strains. Mol Microbiol 2020;114:582-96.

63. Mahony J, Kot W, Murphy J, et al. Investigation of the relationship between lactococcal host cell wall polysaccharide genotype and 936 phage receptor binding protein phylogeny. Appl Environ Microbiol 2013;79:4385-92.

64. Ainsworth S, Sadovskaya I, Vinogradov E, et al. Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity. mBio 2014;5:e00880-14.

65. Murphy J, Bottacini F, Mahony J, et al. Comparative genomics and functional analysis of the 936 group of lactococcal Siphoviridae phages. Sci Rep 2016;6:21345.

66. Vegge CS, Vogensen FK, Mc Grath S, Neve H, van Sinderen D, Brøndsted L. Identification of the lower baseplate protein as the antireceptor of the temperate lactococcal bacteriophages TP901-1 and Tuc2009. J Bacteriol 2006;188:55-63.

67. Romero DA, Magill D, Millen A, Horvath P, Fremaux C. Dairy lactococcal and streptococcal phage-host interactions: an industrial perspective in an evolving phage landscape. FEMS Microbiol Rev 2020;44:909-32.

68. Binetti A, Quiberoni A, Reinheimer J. Phage adsorption to Streptococcus thermophilus. Influence of environmental factors and characterization of cell-receptors. Food Res Int 2002;35:73-83.

69. Quiberoni A, Stiefel JI, Reinheimer JA. Characterization of phage receptors in Streptococcus thermophilus using purified cell walls obtained by a simple protocol. J Appl Microbiol 2000;89:1059-65.

70. Szymczak P, Rau MH, Monteiro JM, et al. A comparative genomics approach for identifying host-range determinants in Streptococcus thermophilus bacteriophages. Sci Rep 2019;9:7991.

71. Millen AM, Romero DA. Genetic determinants of lactococcal C2viruses for host infection and their role in phage evolution. J Gen Virol 2016;97:1998-2007.

72. Lubbers MW, Waterfield NR, Beresford TP, Le Page RW, Jarvis AW. Sequencing and analysis of the prolate-headed lactococcal bacteriophage c2 genome and identification of the structural genes. Appl Environ Microbiol 1995;61:4348-56.

73. Chandry PS, Moore SC, Boyce JD, Davidson BE, Hillier AJ. Analysis of the DNA sequence, gene expression, origin of replication and modular structure of the Lactococcus lactis lytic bacteriophage sk1. Mol Microbiol 1997;26:49-64.

74. Dupont K, Vogensen FK, Neve H, Bresciani J, Josephsen J. Identification of the receptor-binding protein in 936-species lactococcal bacteriophages. Appl Environ Microbiol 2004;70:5818-24.

75. Spinelli S, Desmyter A, Verrips CT, de Haard HJ, Moineau S, Cambillau C. Lactococcal bacteriophage p2 receptor-binding protein structure suggests a common ancestor gene with bacterial and mammalian viruses. Nat Struct Mol Biol 2006;13:85-9.

76. Siponen M, Spinelli S, Blangy S, Moineau S, Cambillau C, Campanacci V. Crystal structure of a chimeric receptor binding protein constructed from two lactococcal phages. J Bacteriol 2009;191:3220-5.

77. Duplessis M, Moineau S. Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages. Mol Microbiol 2001;41:325-36.

78. Vegge CS, Neve H, Brøndsted L, Heller KJ, Vogensen FK. Analysis of the collar-whisker structure of temperate lactococcal bacteriophage TP901-1. Appl Environ Microbiol 2006;72:6815-8.

79. Hayes S, Vincentelli R, Mahony J, et al. Functional carbohydrate binding modules identified in evolved dits from siphophages infecting various Gram-positive bacteria. Mol Microbiol 2018;110:777-95.

80. Kot W, Hansen LH, Neve H, et al. Sequence and comparative analysis of Leuconostoc dairy bacteriophages. Int J Food Microbiol 2014;176:29-37.

81. Plisson C, White HE, Auzat I, et al. Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection. EMBO J 2007;26:3720-8.

82. Baptista C, Santos MA, São-José C. Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB. J Bacteriol 2008;190:4989-96.

83. Rio B, Sánchez-Llana E, Martínez N, Fernández M, Ladero V, Alvarez MA. Isolation and characterization of Enterococcus faecalis-infecting bacteriophages from different cheese types. Front Microbiol 2020;11:592172.

84. Carlton RM, Noordman WH, Biswas B, de Meester ED, Loessner MJ. Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul Toxicol Pharmacol 2005;43:301-12.

85. Erkus O, de Jager VC, Spus M, et al. Multifactorial diversity sustains microbial community stability. ISME J 2013;7:2126-36.

86. Melo AG, Rousseau GM, Tremblay DM, Labrie SJ, Moineau S. DNA tandem repeats contribute to the genetic diversity of Brevibacterium aurantiacum phages. Environ Microbiol 2020;22:3413-28.

87. Kelleher P, Mahony J, Schweinlin K, Neve H, Franz CM, van Sinderen D. Assessing the functionality and genetic diversity of lactococcal prophages. Int J Food Microbiol 2018;272:29-40.

88. Ventura M, Canchaya C, Kleerebezem M, de Vos WM, Siezen RJ, Brüssow H. The prophage sequences of Lactobacillus plantarum strain WCFS1. Virology 2003;316:245-55.

89. Brandt K, Tilsala-timisjärvi A, Alatossava T. Phage-related DNA polymorphism in dairy and probiotic Lactobacillus. Micron 2001;32:59-65.

90. Reiter B. Lysogenic strains of lactic streptococci. Nature 1949;164:667.

91. Terzaghi BE, Sandine WE. Bacteriophage production following exposure of lactic streptococci to ultraviolet radiation. Microbiology 1981;122:305-11.

92. Oliveira J, Mahony J, Hanemaaijer L, et al. Detecting Lactococcus lactis prophages by mitomycin C-mediated induction coupled to flow cytometry analysis. Front Microbiol 2017;8:1343.

93. Huggins AR, Sandine WE. Incidence and properties of temperate bacteriophages induced from lactic streptococci. Appl Environ Microbiol 1977;33:184-91.

94. Chen F, Lu JR, Binder BJ, Liu YC, Hodson RE. Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR gold. Appl Environ Microbiol 2001;67:539-45.

95. Anderson B, Rashid MH, Carter C, et al. Enumeration of bacteriophage particles: Comparative analysis of the traditional plaque assay and real-time QPCR- and nanosight-based assays. Bacteriophage 2011;1:86-93.

96. Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D. Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol 1999;65:45-52.

97. Ho CH, Stanton-Cook M, Beatson SA, Bansal N, Turner MS. Stability of active prophages in industrial Lactococcus lactis strains in the presence of heat, acid, osmotic, oxidative and antibiotic stressors. Int J Food Microbiol 2016;220:26-32.

98. Grath S, Fitzgerald GF, van Sinderen D. Bacteriophages in dairy products: pros and cons. Biotechnol J 2007;2:450-5.

99. Husson-Kao C, Mengaud J, Cesselin B, van Sinderen D, Benbadis L, Chapot-Chartier MP. The Streptococcus thermophilus autolytic phenotype results from a leaky prophage. Appl Environ Microbiol 2000;66:558-65.

100. O'Sullivan D, Ross RP, Fitzgerald GF, Coffey A. Investigation of the relationship between lysogeny and lysis of Lactococcus lactis in cheese using prophage-targeted PCR. Appl Environ Microbiol 2000;66:2192-8.

101. Ladero V, García P, Bascarán V, Herrero M, Alvarez MA, Suárez JE. Identification of the repressor-encoding gene of the Lactobacillus bacteriophage A2. J Bacteriol 1998;180:3474-6.

102. McGrath S, Fitzgerald GF, van Sinderen D. Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Mol Microbiol 2002;43:509-20.

103. Mahony J, McGrath S, Fitzgerald GF, van Sinderen D. Identification and characterization of lactococcal-prophage-carried superinfection exclusion genes. Appl Environ Microbiol 2008;74:6206-15.

104. Ruiz-Cruz S, Parlindungan E, Erazo Garzon A, et al. Lysogenization of a Lactococcal host with three distinct temperate phages provides homologous and heterologous phage resistance. Microorganisms 2020;8:1685.

105. Lopatina A, Tal N, Sorek R. Abortive infection: bacterial suicide as an antiviral immune strategy. Annu Rev Virol 2020;7:371-84.

106. Chopin MC, Chopin A, Bidnenko E. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 2005;8:473-9.

107. Pei Z, Sadiq FA, Han X, et al. Identification, characterization, and phylogenetic analysis of eight new inducible prophages in Lactobacillus. Virus Res 2020;286:198003.

108. Tock MR, Dryden DT. The biology of restriction and anti-restriction. Curr Opin Microbiol 2005;8:466-72.

109. Ventura M, Zomer A, Canchaya C, et al. Comparative analyses of prophage-like elements present in two Lactococcus lactis strains. Appl Environ Microbiol 2007;73:7771-80.

110. Dedrick RM, Jacobs-Sera D, Bustamante CA, et al. Prophage-mediated defence against viral attack and viral counter-defence. Nat Microbiol 2017;2:16251.

111. Ramisetty BCM, Sudhakari PA. Bacterial ‘Grounded’ prophages: hotspots for genetic renovation and innovation. Front Genet 2019;10:65.

112. Oh JH, Lin XB, Zhang S, et al. Prophages in Lactobacillus reuteri are associated with fitness trade-offs but can increase competitiveness in the gut ecosystem. Appl Environ Microbiol 2019;86:e01922-19.

113. Townsend EM, Kelly L, Muscatt G, et al. The human gut phageome: origins and roles in the human gut microbiome. Front Cell Infect Microbiol 2021;11:643214.

114. Lu Z, Breidt F, Plengvidhya V, Fleming HP. Bacteriophage ecology in commercial sauerkraut fermentations. Appl Environ Microbiol 2003;69:3192-202.

115. Jung JY, Lee SH, Kim JM, et al. Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl Environ Microbiol 2011;77:2264-74.

116. Göller PC, Haro-Moreno JM, Rodriguez-Valera F, Loessner MJ, Gómez-Sanz E. Uncovering a hidden diversity: optimized protocols for the extraction of dsDNA bacteriophages from soil. Microbiome 2020;8:17.

117. Jung MJ, Kim MS, Yun JH, et al. Viral community predicts the geographical origin of fermented vegetable foods more precisely than bacterial community. Food Microbiol 2018;76:319-27.

118. Dugat-Bony E, Lossouarn J, De Paepe M, et al. Viral metagenomic analysis of the cheese surface: A comparative study of rapid procedures for extracting viral particles. Food Microbiol 2020;85:103278.

119. Thingstad TF. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 2000;45:1320-8.

120. Wen R, Li XA, Han G, Chen Q, Kong B. Fungal community succession and volatile compound dynamics in Harbin dry sausage during fermentation. Food Microbiol 2021;99:103764.

121. Świder O, Wójcicki M, Bujak M, Juszczuk-Kubiak E, Szczepańska M, Roszko MŁ. Time evolution of microbial composition and metabolic profile for biogenic amines and free amino acids in a model cucumber fermentation system brined with 0.5% to 5.0% sodium chloride. Molecules 2021;26:5796.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/