REFERENCES
1. Gür, T. M. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy. Environ. Sci. 2018, 11, 2696-767.
2. Chen, H.; Ling, M.; Hencz, L.; et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev. 2018, 118, 8936-82.
4. Yao, Z.; Song, Z.; Hao, H.; et al. Homogeneous/Inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 2017, 29, 1601727.
5. Palneedi, H.; Peddigari, M.; Hwang, G.; Jeong, D.; Ryu, J. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 2018, 28, 1803665.
6. Feng, Q. K.; Zhong, S. L.; Pei, J. Y.; et al. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem. Rev. 2022, 122, 3820-78.
7. Wang, G.; Lu, Z.; Li, Y.; et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chem. Rev. 2021, 121, 6124-72.
8. Yang, Z.; Du, H.; Jin, L.; Poelman, D. High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges. J. Mater. Chem. A. 2021, 9, 18026-85.
9. Yang, L.; Kong, X.; Li, F.; et al. Perovskite lead-free dielectrics for energy storage applications. Porg. Mater. Sci. 2019, 102, 72-108.
10. Zhang, L.; Pu, Y.; Chen, M.; Peng, X.; Wang, B.; Shang, J. Design strategies of perovskite energy-storage dielectrics for next-generation capacitors. J. Eur. Ceram. Soc. 2023, 43, 5713-47.
11. Qi, H.; Xie, A.; Zuo, R. Local structure engineered lead-free ferroic dielectrics for superior energy-storage capacitors: a review. Energy. Storage. Mater. 2022, 45, 541-67.
12. Dai, S.; Li, M.; Wu, X.; et al. Combinatorial optimization of perovskite-based ferroelectric ceramics for energy storage applications. J. Adv. Ceram. 2024, 13, 877-910.
13. Wei, J.; Zhu, L. Intrinsic polymer dielectrics for high energy density and low loss electric energy storage. Prog. Polymer. Sci. 2020, 106, 101254.
14. Yang, M.; Guo, M.; Xu, E.; et al. Polymer nanocomposite dielectrics for capacitive energy storage. Nat. Nanotechnol. 2024, 19, 588-603.
15. Wang, J.; Shen, Z. Modeling-guided understanding microstructure effects in energy storage dielectrics. Microstructures 2021, 1, 2021006.
16. Goodenough, J. B. Energy storage materials: a perspective. Energy. Storage. Mater. 2015, 1, 158-61.
17. Chen, K.; Xue, D. Materials chemistry toward electrochemical energy storage. J. Mater. Chem. A. 2016, 4, 7522-37.
18. Mahmoud, M.; Ramadan, M.; Olabi, A.; Pullen, K.; Naher, S. A review of mechanical energy storage systems combined with wind and solar applications. Energy. Conv. Manag. 2020, 210, 112670.
19. Wang, D.; Liu, N.; Chen, F.; Wang, Y.; Mao, J. Progress and prospects of energy storage technology research: Based on multidimensional comparison. J. Energy. Storage. 2024, 75, 109710.
20. Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28-62.
21. Ould Amrouche, S.; Rekioua, D.; Rekioua, T.; Bacha, S. Overview of energy storage in renewable energy systems. Int. J. Hydrog. Energy. 2016, 41, 20914-27.
22. Hong, K.; Lee, T. H.; Suh, J. M.; Yoon, S. H.; Jang, H. W. Perspectives and challenges in multilayer ceramic capacitors for next generation electronics. J. Mater. Chem. C. 2019, 7, 9782-802.
23. Zhang, G.; Zhang, S.; Wang, Q. Dielectric materials for electrical energy storage. J. Materiomics. 2022, 8, 1287-9.
24. Damjanovic, D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 1998, 61, 1267-324.
25. Hennings, D.; Schreinemacher, B.; Schreinemacher, H. High-permittivity dielectric ceramics with high endurance. J. Eur. Ceram. Soc. 1994, 13, 81-8.
26. Jin, L.; Li, F.; Zhang, S.; Green, D. J. Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 2014, 97, 1-27.
27. Yan, H.; Inam, F.; Viola, G.; et al. The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops. J. Adv. Dielect. 2011, 01, 107-18.
28. Moriwake, H.; Fisher, C. A. J.; Kuwabara, A.; Fu, D. First-principles study of point defect formation in AgNbO3. Jpn. J. Appl. Phys. 2013, 52, 09KF08.
29. Hao, X.; Zhai, J.; Kong, L. B.; Xu, Z. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog. Mater. Sci. 2014, 63, 1-57.
30. Xu, G.; Wen, J.; Stock, C.; Gehring, P. M. Phase instability induced by polar nanoregions in a relaxor ferroelectric system. Nat. Mater. 2008, 7, 562-6.
31. Eremenko, M.; Krayzman, V.; Bosak, A.; et al. Local atomic order and hierarchical polar nanoregions in a classical relaxor ferroelectric. Nat. Commun. 2019, 10, 2728.
33. Müller, K. A.; Burkard, H. SrTiO3: an intrinsic quantum paraelectric below 4 K. Phys. Rev. B. 1979, 19, 3593-602.
34. Fan, Y.; Qu, W.; Qiu, H.; et al. High entropy modulated quantum paraelectric perovskite for capacitive energy storage. Nat. Commun. 2025, 16, 3818.
35. Aramberri, H.; Fedorova, N. S.; Íñiguez, J. Ferroelectric/paraelectric superlattices for energy storage. Sci. Adv. 2022, 8, eabn4880.
36. Zhang, H.; Wei, T.; Zhang, Q.; et al. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J. Mater. Chem. C. 2020, 8, 16648-67.
37. Zhang, G.; Zhu, D.; Zhang, X.; et al. High-energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 antiferroelectric ceramics fabricated by the hot-press sintering method. J. Am. Ceram. Soc. 2015, 98, 1175-81.
38. Gao, X.; Li, Y.; Chen, J.; et al. High energy storage performances of Bi1-xSmxFe0.95Sc0.05O3 lead-free ceramics synthesized by rapid hot press sintering. J. Eur. Ceram. Soc. 2019, 39, 2331-8.
39. Huang, Y. H.; Wu, Y. J.; Li, J.; Liu, B.; Chen, X. M. Enhanced energy storage properties of barium strontium titanate ceramics prepared by sol-gel method and spark plasma sintering. J. Alloy. Compd. 2017, 701, 439-46.
40. Liu, B.; Wu, Y.; Huang, Y. H.; Song, K. X.; Wu, Y. J. Enhanced dielectric strength and energy storage density in BaTi0.7Zr0.3O3 ceramics via spark plasma sintering. J. Mater. Sci. 2019, 54, 4511-7.
41. Yan, Y.; Hui, J.; Wang, X.; et al. Improvement of energy storage properties of BNT-based ceramics via compositional modification. Ceram. Int. 2024, 50, 48918-30.
42. Withers, P. J.; Bouman, C.; Carmignato, S.; et al. X-ray computed tomography. Nat. Rev. Methods. Primers. 2021, 1, 15.
43. Joy, D. C.; Pawley, J. B. High-resolution scanning electron microscopy. Ultramicroscopy 1992, 47, 80-100.
44. Sun, D.; Shang, H.; Jiang, H. Effective metrology and standard of the surface roughness of micro/nanoscale waveguides with confocal laser scanning microscopy. Opt. Lett. 2019, 44, 747-50.
45. Amireddy, K. K.; Balasubramaniam, K.; Rajagopal, P. Holey-structured metamaterial lens for subwavelength resolution in ultrasonic characterization of metallic components. Appl. Phys. Lett. 2016, 108, 224101.
46. Bilsland, C.; Barrow, A.; Britton, T. B. Correlative statistical microstructural assessment of precipitates and their distribution, with simultaneous electron backscatter diffraction and energy dispersive X-ray spectroscopy. Mater. Charact. 2021, 176, 111071.
47. Okuma, G.; Watanabe, S.; Shinobe, K.; et al. 3D multiscale-imaging of processing-induced defects formed during sintering of hierarchical powder packings. Sci. Rep. 2019, 9, 11595.
48. Wang, Z.; Poncharal, P.; de Heer, W. Nanomeasurements in Transmission Electron Microscopy. Microsc. Microanal. 2000, 6, 224-30.
49. Gomez, A.; Gich, M.; Carretero-Genevrier, A.; Puig, T.; Obradors, X. Piezo-generated charge mapping revealed through direct piezoelectric force microscopy. Nat. Commun. 2017, 8, 1113.
50. Pennycook, S. J.; Ishikawa, R.; Wu, H.; et al. Physics through the microscope. Chinese. Phys. B. 2024, 33, 116801.
51. Kumar, A.; Baker, J. N.; Bowes, P. C.; et al. Atomic-resolution electron microscopy of nanoscale local structure in lead-based relaxor ferroelectrics. Nat. Mater. 2021, 20, 62-7.
52. Wu, H.; Zhang, Y.; Wu, J.; Wang, J.; Pennycook, S. J. Microstructural Origins of High Piezoelectric Performance: A Pathway to Practical Lead-Free Materials. Adv. Funct. Mater. 2019, 29, 1902911.
53. Kohno, Y.; Nakamura, A.; Morishita, S.; Shibata, N. Development of tilt-scan system for differential phase contrast scanning transmission electron microscopy. Microscopy 2022, 71, 111-6.
54. Wu, H.; Zhao, X.; Guan, C.; et al. The atomic circus: small electron beams spotlight advanced materials down to the atomic scale. Adv. Mater. 2018, 30, e1802402.
55. Gault, B.; Chiaramonti, A.; Cojocaru-Mirédin, O.; et al. Atom probe tomography. Nat. Rev. Methods. Primers. 2021, 1, 51.
56. Huang, Q.; Chen, Z.; Cabral, M. J.; et al. Direct observation of nanoscale dynamics of ferroelectric degradation. Nat. Commun. 2021, 12, 2095.
57. Fan, Z.; Tan, X. Dual-stimuli in-situ TEM study on the nonergodic/ergodic crossover in the 0.75(Bi1/2Na1/2)TiO3-0.25SrTiO3 relaxor. Appl. Phys. Lett. 2019, 114, 212901.
58. Zhang, L.; Chen, F.; Huang, Y.; Jing, R.; Jin, L. Perspective on polarization regulation for advanced energy storage. Appl. Phys. Lett. 2025, 127, 130502.
59. Ding, S.; Jia, J.; Xu, B.; et al. Overrated energy storage performances of dielectrics seriously affected by fringing effect and parasitic capacitance. Nat. Commun. 2025, 16, 608.
60. Cai, Z.; Wang, H.; Zhao, P.; et al. Significantly enhanced dielectric breakdown strength and energy density of multilayer ceramic capacitors with high efficiency by electrodes structure design. Appl. Phys. Lett. 2019, 115, 023901.
61. Yang, Y.; Xu, K.; Yang, B.; et al. Giant energy storage density with ultrahigh efficiency in multilayer ceramic capacitors via interlaminar strain engineering. Nat. Commun. 2025, 16, 1300.
62. Pan, Z.; Yao, L.; Zhai, J.; Yao, X.; Chen, H. Interfacial coupling effect in organic/inorganic nanocomposites with high energy density. Adv. Mater. 2018, 30, e1705662.
63. Yu, Y.; Zhang, Q.; Xu, Z.; et al. Structure-evolution-designed amorphous oxides for dielectric energy storage. Nat. Commun. 2023, 14, 3031.
64. Liu, Y.; Liu, J.; Pan, H.; et al. Phase-Field simulations of tunable polar topologies in lead-free ferroelectric/paraelectric multilayers with ultrahigh energy-storage performance. Adv. Mater. 2022, 34, e2108772.
65. Silva, J. P. B.; Silva, J. M. B.; Oliveira, M. J. S.; et al. High-performance ferroelectric-dielectric multilayered thin films for energy storage capacitors. Adv. Funct. Mater. 2019, 29, 1807196.
66. Hu, J.; Wang, W.; Yang, Y.; et al. Achieving ultrahigh energy storage performance of PBLZST-based antiferroelectric composite ceramics via interfacial polarization engineering. J. Eur. Ceram. Soc. 2024, 44, 7642-50.
67. Yang, Y.; Dou, Z.; Zou, K.; et al. Superior energy storage performance in antiferroelectric multilayer ceramics via heterogeneous interface structure engineering. Chem. Eng. J. 2023, 451, 138636.
68. Liu, T.; Jia, B.; Wang, J.; et al. High capacitive performances obtained in sandwich structured Bi0.5Na0.5TiO3 -based dielectric ceramics. Inorg. Chem. Front. 2025, 12, 4901-10.
69. Yang, Y.; Zhang, L.; Jing, R.; et al. RFE/RAFE multilayer composite ceramics with excellent dielectric bias-field stability. J. Eur. Ceram. Soc. 2025, 45, 117239.
70. Liu, X.; Yang, T.; Shen, B.; Chen, L. Enhancing the energy storage performance in lead-based antiferroelectric ceramics via Pb(Zr0.88Sn0.12)O3/(Pb0.875La0.05Sr0.05)(Zr0.695Ti0.005Sn0.3)O3-derived laminated composite structures. ACS. Appl. Energy. Mater. 2023, 6, 1218-27.
71. Huan, Y.; Wang, X.; Zheng, Y.; et al. Achieving excellent energy storage reliability and endurance via mechanical performance optimization strategy in engineered ceramics with core-shell grain structure. J. Materiomics. 2022, 8, 601-10.
72. Yan, F.; Ge, G.; Qian, J.; et al. Gradient-structured ceramics with high energy storage performance and excellent stability. Small 2023, 19, e2206125.
73. Yan, F.; Qian, J.; Lin, J.; Ge, G.; Shi, C.; Zhai, J. Ultrahigh energy storage density and efficiency of lead-free dielectrics with sandwich structure. Small 2024, 20, e2306803.
74. Liu, X.; Yang, T.; Li, Y.; Wang, R.; Sun, N. Regulating the switching electric field and energy-storage performance in antiferroelectric ceramics via heterogeneous laminated engineering. Ceram. Int. 2024, 50, 35810-9.
75. Cai, K.; Yan, X.; Deng, P.; et al. Phase coexistence and evolution in sol-gel derived BY-PT-PZ ceramics with significantly enhanced piezoelectricity and high temperature stability. J. Materiomics. 2019, 5, 394-403.
76. Li, Y.; Chang, Z.; Zhang, M.; et al. Realizing outstanding energy storage performance in KBT-based lead-free ceramics via suppressing space charge accumulation. Small 2024, 20, e2401229.
77. Cao, W.; Li, L.; Chen, K.; et al. Interfacial-polarization engineering in BNT-based bulk ceramics for ultrahigh energy-storage density. Adv. Sci. 2024, 11, e2409113.
78. Cao, W.; Lin, R.; Hou, X.; et al. Interfacial polarization restriction for ultrahigh energy-storage density in lead-free ceramics. Adv. Funct. Mater. 2023, 33, 2301027.
79. Pan, H.; Jiang, Y.; Macmanus-driscoll, J. L. Interplay of polarization, strength, and loss in dielectric films for capacitive energy storage: current status and future directions. J. Materiomics. 2023, 9, 516-9.
80. Ren, L.; Guo, K.; Cui, R.; Wang, X.; Zhang, M.; Deng, C. Excellent energy storage performance in BSFCZ/AGO/BNTN double-heterojunction capacitors via the synergistic effect of interface and dead-layer engineering. Nano. Energy. 2024, 129, 110065.
81. Choi, J. O.; Kim, T. Y.; Park, S. M.; et al. Co:BaTiO3/Sn:BaTiO3 heterostructure thin-film capacitors with ultrahigh energy density and breakdown strength. Adv. Elect. Mater. 2023, 9, 2201141.
82. Chi, Q.; Dong, B.; Yin, C.; et al. Improved energy storage performance of NBTM/STM multilayer films via designing the stacking order. J. Mater. Chem. C. 2024, 12, 13927-35.
83. Wang, Y.; Zhu, H.; Luo, H.; et al. Tunable antiferroelectric-like polarization behavior and enhanced energy storage characteristics in symmetric BaTiO3/BiFeO3/BaTiO3 heterostructure. J. Materiomics. 2024, 10, 1290-8.
84. Nguyen, M. D.; Houwman, E. P.; Birkhölzer, Y. A.; Vu, H. N.; Koster, G.; Rijnders, G. Toward design rules for multilayer ferroelectric energy storage capacitors - a study based on lead-free and relaxor-ferroelectric/paraelectric multilayer devices. Adv. Mater. 2024, 36, e2402070.
85. Zhai, X.; Ouyang, J.; Kuai, W.; et al. Enhanced energy storage performance in Ag(Nb,Ta)O3 films via interface engineering. J. Materiomics. 2025, 11, 100895.
86. Chen, X.; Peng, B.; Ding, M.; et al. Giant energy storage density in lead-free dielectric thin films deposited on Si wafers with an artificial dead-layer. Nano. Energy. 2020, 78, 105390.
87. Sun, Z.; Houwman, E. P.; Wang, S.; Nguyen, M. D.; Koster, G.; Rijnders, G. Revealing the effect of the Schottky barrier on the energy storage performance of ferroelectric multilayers. J. Alloys. Compd. 2024, 981, 173758.
88. Sun, Z.; Xin, H.; Diwu, L.; et al. Boosting the energy storage performance of BCZT-based capacitors by constructing a Schottky contact. Mater. Horiz. 2025, 12, 2328-40.
89. Liu, S.; Xin, Z.; Du, W.; Hao, H.; Wang, Q. Improvement in dielectric properties and energy storage performance of barium strontium niobate glass ceramics by Sm2O3 addition. J. Alloys. Compd. 2023, 966, 171579.
90. Liu, S.; Shen, B.; Hao, H.; Zhai, J. Glass-ceramic dielectric materials with high energy density and ultra-fast discharge speed for high power energy storage applications. J. Mater. Chem. C. 2019, 7, 15118-35.
91. Geng, X.; Wang, Y.; Shang, F.; Chen, G. Crystallization temperature dependence of phase evolution and energy storage feature of KSr2Nb5O15 based glass ceramics. J. Mater. Sci. Mater. Electron. 2023, 34, 1264.
92. Chen, K.; Jiang, T.; Shen, B.; Zhai, J. Effects of crystalline temperature on microstructures and dielectric properties in BaO-Na2O-Bi2O3-Nb2O5-Al2O3-SiO2 glass-ceramics. Mater. Sci. Eng. B. 2021, 263, 114885.
93. Wang, J.; Xin, Z.; Hao, H.; Wang, Q.; Sun, X.; Liu, S. Reinforced dielectric properties and energy storage performance of BaO-Na2O-Nb2O5-SiO2-TiO2-ZrO2 dielectric glass ceramics. Ceram. Int. 2024, 50, 17283-90.
94. Wang, H.; Liu, J.; Zhai, J.; et al. Effect of crystallization temperature on dielectric and energy-storage properties in SrO-Na2O-Nb2O5-SiO2 glass-ceramics. Ceram. Int. 2017, 43, 8898-904.
95. Luo, F.; Xing, J.; Qin, Y.; Zhong, Y.; Shang, F.; Chen, G. Up-conversion luminescence, temperature sensitive and energy storage performance of lead-free transparent Yb3+/Er3+ co-doped Ba2NaNb5O15 glass-ceramics. J. Alloys. Compd. 2022, 910, 164859.
96. Liu, J.; Wang, H.; Shen, B.; et al. Crystallization kinetics, breakdown strength, and energy-storage properties in niobate-based glass-ceramics. J. Alloys. Compd. 2017, 722, 212-8.
97. Chen, C.; Wang, T.; Zhang, S.; Li, B. Engineering phase separation in niobate glass through ab initio molecular dynamics for enhanced energy storage performance and unprecedented thermal stability in niobate-based glass ceramics. ACS. Appl. Mater. Interfaces. 2024, 16, 13961-71.
98. Yang, K.; Liu, J.; Shen, B.; Zhai, J.; Wang, H. Large improvement on energy storage and charge-discharge properties of Gd2O3-doped BaO-K2O-Nb2O5-SiO2 glass-ceramic dielectrics. Mater. Sci. Eng. B. 2017, 223, 178-84.
99. Wei, J.; Jiang, D.; Yu, W.; Shang, F.; Chen, G. The effect of Hf doping on the dielectric and energy storage performance of barium titanate based glass ceramics. Ceram. Int. 2021, 47, 11581-6.
100. Won, S. S.; Kim, H.; Lee, J.; Jeong, C. K.; Kim, S.; Kingon, A. I. Lead-free bismuth pyrochlore-based dielectric films for ultrahigh energy storage capacitors. Mater. Today. Phys. 2023, 33, 101054.
101. Shang, F.; Wei, J.; Xu, J.; et al. Boosting energy storage performance of glass ceramics via modulating defect formation during crystallization. Adv. Sci. 2024, 11, e2307011.
102. Pu, Y.; Wang, W.; Guo, X.; Shi, R.; Yang, M.; Li, J. Enhancing the energy storage properties of Ca0.5Sr0.5TiO3 -based lead-free linear dielectric ceramics with excellent stability through regulating grain boundary defects. J. Mater. Chem. C. 2019, 7, 14384-93.
103. Deng, T.; Hu, T.; Liu, Z.; et al. Ultrahigh energy storage performance in BNT-based binary ceramic via relaxor design and grain engineering. Energy. Storage. Mater. 2024, 71, 103659.
104. Lee, S. Y.; Kim, H.; Baek, C.; et al. Yielding optimal dielectric energy storage and breakdown properties of lead-free pyrochlore ceramics by grain refinement strategies. J. Alloys. Compd. 2024, 1008, 176569.
105. Wang, Z.; Bin, C.; Zheng, S.; Wang, J. Effect of grain size and grain boundary on the energy storage performance of polycrystalline ferroelectrics. Appl. Phys. Lett. 2024, 125, 152903.
106. Zhang, L.; Cao, S.; Li, Y.; et al. Achieving ultrahigh energy storage performance over a broad temperature range in (Bi0.5Na0.5)TiO3-based eco-friendly relaxor ferroelectric ceramics via multiple engineering processes. J. Alloys. Compd. 2022, 896, 163139.
107. Chao, W.; Tian, L.; Yang, T.; Li, Y.; Liu, Z. Excellent energy storage performance achieved in novel PbHfO3-based antiferroelectric ceramics via grain size engineering. Chem. Eng. J. 2022, 433, 133814.
108. Li, Y.; Wu, J.; Zhang, Z.; et al. Improving the electric energy storage performance of multilayer ceramic capacitors by refining grains through a two-step sintering process. Chem. Eng. J. 2024, 479, 147844.
109. Liu, G.; Li, Y.; Guo, B.; et al. Ultrahigh dielectric breakdown strength and excellent energy storage performance in lead-free barium titanate-based relaxor ferroelectric ceramics via a combined strategy of composition modification, viscous polymer processing, and liquid-phase sintering. Chem. Eng. J. 2020, 398, 125625.
110. Zhu, X.; Gao, Y.; Shi, P.; et al. Ultrahigh energy storage density in (Bi0.5Na0.5)0.65Sr0.35TiO3-based lead-free relaxor ceramics with excellent temperature stability. Nano. Energy. 2022, 98, 107276.
111. Li, G.; Shi, C.; Zhu, K.; et al. Achieving synergistic electromechanical and electrocaloric responses by local structural evolution in lead-free BNT-based relaxor ferroelectrics. Chem. Eng. J. 2022, 431, 133386.
112. Xu, Y.; Pang, D.; Li, T. Achieving excellent energy storage properties and temperature stability in BNT-BT-BS ceramics under low electric field. Appl. Surf. Sci. 2025, 697, 163011.
113. Li, Y.; Hou, Y.; Xi, K.; Zheng, M.; Zhu, M. An intragranular segregation structure enables an excellent energy storage performance in composite dielectrics through delayed saturation polarization. ACS. Appl. Mater. Interfaces. 2024, 16, 57386-94.
114. Stojanovic, B.; Foschini, C.; Zaghete, M.; et al. Size effect on structure and dielectric properties of Nb-doped barium titanate. J. Mater. Process. Technol. 2003, 143-144, 802-6.
115. Hoshina, T. Size effect of barium titanate: fine particles and ceramics. J. Ceram. Soc. Japan. 2013, 121, 156-61.
116. Huan, Y.; Wang, X.; Fang, J.; Li, L. Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics. J. Eur. Ceram. Soc. 2014, 34, 1445-8.
117. Tan, Y.; Zhang, J.; Wu, Y.; et al. Unfolding grain size effects in barium titanate ferroelectric ceramics. Sci. Rep. 2015, 5, 9953.
118. Jin, Q.; Song, E.; Cai, K. Simple synthesis of barium titanate ceramics with controllable grain size. J. Mater. Sci. Mater. Electron. 2022, 33, 26801-12.
119. Zhang, M.; Zhao, C.; Yan, X.; et al. Understanding the grain size dependence of functionalities in lead-free (Ba,Ca)(Zr,Ti)O3. Acta. Materialia. 2024, 276, 120112.
120. Ghayour, H.; Abdellahi, M. A brief review of the effect of grain size variation on the electrical properties of BaTiO3-based ceramics. Powder. Technol. 2016, 292, 84-93.
121. Yao, G.; Wang, X.; Yang, Y.; Li, L. Effects of Bi2O3 and Yb2O3 on the curie temperature in BaTiO3 -based ceramics. J. Am. Ceram. Soc. 2010, 93, 1697-701.
122. Kinoshita, K.; Yamaji, A. Grain-size effects on dielectric properties in barium titanate ceramics. J. Appl. Phys. 1976, 47, 371-3.
123. Arlt, G.; Hennings, D.; de With, G. Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 1985, 58, 1619-25.
124. Acosta, M.; Novak, N.; Rojas, V.; et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 2017, 4, 041305.
125. Wa Gachigi, K.; Kumar, U.; Dougherty, J. P. Grain size effects in barium titanate. Ferroelectrics 1993, 143, 229-38.
126. Sun, T.; Wang, X.; Wang, H.; Cheng, Z.; Zhang, X.; Li, L. A theoretical model on size effect of dielectric response in DC bias field in barium titanate ceramic system. J. Am. Ceram. Soc. 2010, 93, 3808-13.
127. Huang, X.; Wang, P.; Zhao, J.; et al. Significantly enhanced dielectric properties of BaTiO3-based ceramics via synergetic grain size and defect engineering. Ceram. Int. 2024, 50, 15202-8.
128. Wu, C.; Pu, Y.; Lu, X.; et al. Constructing novel SrTiO3-based composite ceramics with high energy storage performance under moderate electric field. J. Power. Sources. 2024, 604, 234475.
129. Wang, S.; Qian, J.; Ge, G.; et al. Embedding plate-like pyrochlore in perovskite phase to enhance energy storage performance of BNT-based ceramic capacitors. Adv. Energy. Mater. 2025, 15, 2403926.
130. Yin, M.; Zhang, Y.; Bai, H.; et al. Preeminent energy storage properties and superior stability of (Ba(1-x)Bix)(Ti(1-x)Mg2x/3Tax/3)O3 relaxor ferroelectric ceramics via elongated rod-shaped grains and domain structural regulation. J. Mater. Sci. Technol. 2024, 184, 207-20.
131. Deng, T.; Liu, Z.; Hu, T.; Dai, K.; Hu, Z.; Wang, G. Excellent energy-storage performance in Bi0.5Na0.5TiO3-based lead-free composite ceramics via introducing pyrochlore phase Sm2Ti2O7. Chem. Eng. J. 2023, 465, 142992.
132. Lu, R.; Wang, J.; Duan, T.; et al. Metadielectrics for high-temperature energy storage capacitors. Nat. Commun. 2024, 15, 6596.
133. Shen, M.; Zhang, G.; Wang, H.; et al. Excellent energy storage density and superior discharge properties of NBT-NN-ST/xHfO2 ceramics via 0-3 type heterogeneous structure designing. J. Mater. Chem. A. 2023, 11, 18972-83.
134. Yang, F.; Bao, Y.; Zeng, B.; et al. Excellent energy storage properties in ZrO2 toughened Ba0.55Sr0.45TiO3-based relaxor ferroelectric ceramics via multi-scale synergic regulation. Chem. Eng. J. 2024, 493, 152624.
135. Yang, B.; Gao, Y.; Li, J.; et al. Tailoring Zr-doped tungsten bronze (Sr,Ba,Gd)Nb2O6 relaxor ferroelectric with high electrical insulation interface for dielectric capacitor. Compos. Pt. B. Eng. 2024, 271, 111189.
136. Huang, X.; Cao, W.; Liu, L.; Niu, X.; Liang, C.; Wang, C. Enhanced energy storage performance of temperature-stable X8R ceramics with core-shell microstructure. Ceram. Int. 2025, 51, 2259-67.
137. Gonçalves, L. G.; Rino, J. P. Finite size effects on a core-shell model of barium titanate. Comput. Mater. Sci. 2017, 130, 98-102.
138. Fang, C.; Zhou, D.; Gong, S.; Luo, W. Multishell structure and size effect of barium titanate nanoceramics induced by grain surface effects. Phys. Status. Solidi. B. 2010, 247, 219-24.
139. Xue, G.; Zhou, X.; Su, Y.; Tang, L.; Zou, J.; Zhang, D. Core-shell structure and domain engineering in Bi0.5Na0.5TiO3-based ceramics with enhanced dielectric and energy storage performance. J. Materiomics. 2023, 9, 855-66.
140. Dong, X.; Li, X.; Chen, X.; et al. (1-x)[0.90NN-0.10Bi(Mg2/3Nb1/3)O3]-x(Bi0.5Na0.5)0.7Sr0.3TiO3 ceramics with core-shell structures: a pathway for simultaneously achieving high polarization and breakdown strength. Nano. Energy. 2022, 101, 107577.
141. Chai, Q.; Tan, P.; Zhang, L.; et al. Ultrahigh energy storage in relaxor ferroelectric ceramics with core-shell grains. Adv. Funct. Mater. 2025, 35, 2503798.
142. Xie, S.; Chen, Y.; He, Q.; et al. Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese. Chem. Lett. 2024, 35, 108871.
143. Wu, L.; Lan, G.; Cai, Z.; Zhao, L.; Lu, J.; Wang, X. Concurrent achievement of giant energy density and ultrahigh efficiency in antiferroelectric ceramics via core-shell structure design. Appl. Phys. Lett. 2022, 120, 172902.
144. Qi, J.; Cao, M.; Heath, J. P.; et al. Improved breakdown strength and energy storage density of a Ce doped strontium titanate core by silica shell coating. J. Mater. Chem. C. 2018, 6, 9130-9.
145. Ma, R.; Cui, B.; Shangguan, M.; et al. A novel double-coating approach to prepare fine-grained BaTiO3@La2O3@SiO2 dielectric ceramics for energy storage application. J. Alloys. Compd. 2017, 690, 438-45.
146. Zhang, X.; Zhao, L.; Liu, L.; Zhang, Z.; Cui, B. Interface and defect modulation via a core-shell design in (Na0.5Bi0.5TiO3@La2O3)-(SrSn0.2Ti0.8O3@La2O3)-Bi2O3-B2O3-SiO2 composite ceramics for wide-temperature energy storage capacitors. Chem. Eng. J. 2022, 435, 135061.
147. Zhang, X.; Zhao, L.; Qiu, Y.; et al. Achieving comprehensive temperature-stable energy storage properties in core-shell Na0.4K0.1Bi0.5TiO3@(SrZrO3-BiMg0.5Sn0.5O3)@SiO2 ceramics via a multi-scale synergistic optimization. Chem. Eng. J. 2023, 462, 142251.
148. Zhu, C.; Li, A.; Li, X.; et al. Ultra-stable dielectric properties and enhanced energy storage density of BNT-NN-based ceramics via precise core-shell structure controlling. J. Alloys. Compd. 2025, 1010, 177556.
149. Zhao, P.; Cai, Z.; Chen, L.; et al. Ultra-high energy storage performance in lead-free multilayer ceramic capacitors via a multiscale optimization strategy. Energy. Environ. Sci. 2020, 13, 4882-90.
150. Li, J.; Qu, W.; Daniels, J.; et al. Lead zirconate titanate ceramics with aligned crystallite grains. Science 2023, 380, 87-93.
151. Zhang, L.; Jing, R.; Du, H.; et al. Ultrahigh Electrostrictive effect in lead-free ferroelectric ceramics via texture engineering. ACS. Appl. Mater. Interfaces. 2023, 15, 50265-74.
152. Li, J.; Shen, Z.; Chen, X.; et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat. Mater. 2020, 19, 999-1005.
153. Wang, J.; Shen, Z. H.; Liu, R. L.; et al. Texture engineering modulating electromechanical breakdown in multilayer ceramic capacitors. Adv. Sci. 2023, 10, e2300320.
154. Li, Y.; Fan, N.; Wu, J.; et al. Enhanced energy storage performance in NBT-based MLCCs via cooperative optimization of polarization and grain alignment. Nat. Commun. 2024, 15, 8958.
155. Zhang, L.; Jing, R.; Huang, Y.; et al. Ultra-weak polarization-strain coupling effect boosts capacitive energy storage. Adv. Mater. 2024, 36, e2406219.
156. Zhu, L. F.; Deng, S.; Zhao, L.; et al. Heterovalent-doping-enabled atom-displacement fluctuation leads to ultrahigh energy-storage density in AgNbO3-based multilayer capacitors. Nat. Commun. 2023, 14, 1166.
157. Diwu, L.; Wang, P.; Wang, T.; et al. Engineering ordered-disordered domains for high-performance energy storage in BCZT-based relaxor ferroelectrics. Small 2025, 21, e2503713.
158. Liu, W.; Fu, B.; Zhang, J.; et al. Exceptional capacitive energy storage in CaTiO3-based ceramics featuring laminate nanodomains. Chem. Eng. J. 2025, 512, 162477.
159. Zhang, Y.; Li, A.; Zhang, G.; et al. Optimization of energy storage properties in lead-free barium titanate-based ceramics via B-site defect dipole engineering. ACS. Sustainable. Chem. Eng. 2022, 10, 2930-7.
160. Hu, Q.; Wei, X. Abnormal phase transition and polarization mismatch phenomena in BaTiO3 -based relaxor ferroelectrics. J. Adv. Dielect. 2019, 09, 1930002.
161. Bokov, A. A.; Ye, Z. Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 2006, 41, 31-52.
162. Li, Y.; Lin, W.; Yang, B.; Zhang, S.; Zhao, S. Domain dynamics engineering in ergodic relaxor ferroelectrics for dielectric energy storage. Acta. Materialia. 2023, 255, 119071.
163. Wang, W.; Zhang, L.; Jing, R.; et al. Enhancement of energy storage performance in lead-free barium titanate-based relaxor ferroelectrics through a synergistic two-step strategy design. Chem. Eng. J. 2022, 434, 134678.
164. Wang, W.; Zhang, L.; Li, C.; et al. Effective strategy to improve energy storage properties in lead-free (Ba0.8Sr0.2)TiO3-Bi(Mg0.5Zr0.5)O3 relaxor ferroelectric ceramics. Chem. Eng. J. 2022, 446, 137389.
165. Wang, W.; Zhang, L.; Yang, Y.; et al. Enhancing energy storage performance in Na 0.5 Bi 0.5 TiO 3 -based lead-free relaxor ferroelectric ceramics along a stepwise optimization route. J. Mater. Chem. A. 2023, 11, 2641-51.
166. Guo, B.; Yan, Y.; Tang, M.; et al. Energy storage performance of Na0.5Bi0.5TiO3 based lead-free ferroelectric ceramics prepared via non-uniform phase structure modification and rolling process. Chem. Eng. J. 2021, 420, 130475.
167. Liu, G.; Tang, M.; Hou, X.; et al. Energy storage properties of bismuth ferrite based ternary relaxor ferroelectric ceramics through a viscous polymer process. Chem. Eng. J. 2021, 412, 127555.
168. Zhang, L.; Jing, R.; Huang, Y.; et al. Ultrahigh electrostrictive effect in potassium sodium niobate-based lead-free ceramics. J. Eur. Ceram. Soc. 2022, 42, 944-53.
169. Xu, Y.; Yang, Z.; Xu, K.; et al. Enhanced energy-storage performance in silver niobate-based dielectric ceramics sintered at low temperature. J. Alloys. Compd. 2022, 913, 165313.
170. Wei, F.; Zhang, L.; Jing, R.; et al. Structure, dielectric, electrostrictive and electrocaloric properties of environmentally friendly Bi-substituted BCZT ferroelectric ceramics. Ceram. Int. 2021, 47, 34676-86.
171. Zhou, M.; Liang, R.; Zhou, Z.; Dong, X. Achieving ultrahigh energy storage density and energy efficiency simultaneously in sodium niobate-based lead-free dielectric capacitors via microstructure modulation. Inorg. Chem. Front. 2019, 6, 2148-57.
172. Wang, H.; Bu, X.; Zhang, X.; et al. Pb/Bi-free tungsten bronze-based relaxor ferroelectric ceramics with remarkable energy storage performance. ACS. Appl. Energy. Mater. 2021, 4, 9066-76.
173. Wan, R.; Zhang, H.; Sheng, L.; et al. Outstanding energy density and charge-discharge performances in Sr2KNb5O15-based tungsten bronze ceramics for dielectric capacitor applications. Ceram. Int. 2024, 50, 37126-35.
174. Yang, B.; Zhang, J.; Lou, X.; et al. Enhancing comprehensive energy storage properties in tungsten bronze Sr0.53Ba0.47Nb2O6-based lead-free ceramics by B-site doping and relaxor tuning. ACS. Appl. Mater. Interfaces. 2022, 14, 34855-66.
175. Koch, L.; Steiner, S.; Hoang, A.; Klomp, A. J.; Albe, K.; Frömling, T. Revealing the impact of acceptor dopant type on the electrical conductivity of sodium bismuth titanate. Acta. Materialia. 2022, 229, 117808.
176. Wang, L.; Qi, H.; Deng, S.; et al. Design of superior electrostriction in BaTiO3-based lead-free relaxors via the formation of polarization nanoclusters. InfoMat 2023, 5, e12362.
177. Yang, Y.; Jing, R.; Wang, J.; Lu, X.; Du, H.; Jin, L. Large electrostrain and high energy-storage properties of (Sr1/3Nb2/3)4+-substituted (Bi0.51Na0.5)TiO3-0.07BaTiO3 lead-free ceramics. Ceram. Int. 2022, 48, 23975-82.
178. Zhou, M.; Liang, R.; Zhou, Z.; et al. High energy storage properties of (Ni1/3Nb2/3)4+ complex-ion modified (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 ceramics. Mater. Res. Bull. 2018, 98, 166-72.
179. Wu, J.; Mahajan, A.; Riekehr, L.; et al. Perovskite Srx(Bi1-xNa0.97-xLi0.030.5TiO3 ceramics with polar nano regions for high power energy storage. Nano. Energy. 2018, 50, 723-32.
180. Yang, B.; Gao, Y.; Lou, X.; et al. Remarkable energy storage performances of tungsten bronze Sr0.53Ba0.47Nb2O6-based lead-free relaxor ferroelectric for high-temperature capacitors application. Energy. Storage. Mater. 2023, 55, 763-72.
181. Luo, C.; Feng, Q.; Luo, N.; et al. Effect of Ca2+/Hf4+ modification at A/B sites on energy-storage density of Bi0.47Na0.47Ba0.06TiO3 ceramics. Chem. Eng. J. 2021, 420, 129861.
182. Pu, Y.; Zhang, L.; Cui, Y.; Chen, M. High energy storage density and optical transparency of microwave sintered homogeneous (Na0.5Bi0.5)(1-x)BaxTi(1-y)SnyO3 ceramics. ACS. Sustainable. Chem. Eng. 2018, 6, 6102-9.
183. Alkathy, M. S.; Gatasheh, M. K.; Zabotto, F. L.; Kassim, H. A.; Raju, K. C. J.; Eiras, J. A. Enhancing energy storage performance in BaTiO3 ceramics via Mg and La co-doping strategy. J. Mater. Sci. Mater. Electron. 2024, 35, 12816.
184. Zhao, Y.; Li, Z.; Du, H.; et al. Enhanced energy storage properties promoted by the synergistic effects of aging effects and relaxor behavior in Ce-Mn co-doped Sr0.4Ba0.6Nb2O6 ferroelectric ceramics. Ceram. Int. 2024, 50, 38462-70.
185. Dan, Y.; Tang, L.; Ning, W.; et al. Achieving enhanced energy storage performance and ultra-fast discharge time in tungsten-bronze ceramic. J. Adv. Ceram. 2024, 13, 1349-58.
186. Li, D.; Lin, Y.; Zhang, M.; Yang, H. Achieved ultrahigh energy storage properties and outstanding charge-discharge performances in (Na0.5Bi0.5)0.7Sr0.3TiO3-based ceramics by introducing a linear additive. Chem. Eng. J. 2020, 392, 123729.
187. Cui, C.; Pu, Y.; Gao, Z.; et al. Structure, dielectric and relaxor properties in lead-free ST-NBT ceramics for high energy storage applications. J. Alloys. Compd. 2017, 711, 319-26.
188. Yang, Z.; Du, H.; Qu, S.; et al. Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics. J. Mater. Chem. A. 2016, 4, 13778-85.
189. Yan, F.; Huang, K.; Jiang, T.; et al. Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy. Storage. Mater. 2020, 30, 392-400.
190. Zhou, X.; Qi, H.; Yan, Z.; Xue, G.; Luo, H.; Zhang, D. Superior thermal stability of high energy density and power density in domain-engineered Bi0.5Na0.5TiO3-NaTaO3 relaxor ferroelectrics. ACS. Appl. Mater. Interfaces. 2019, 11, 43107-15.
191. Xu, Q.; Liu, H.; Zhang, L.; et al. Structure and electrical properties of lead-free Bi0.5Na0.5TiO3 -based ceramics for energy-storage applications. RSC. Adv. 2016, 6, 59280-91.
192. Kamba, S.; Goian, V.; Bovtun, V.; et al. Incipient ferroelectric properties of NaTaO3. Ferroelectrics 2012, 426, 206-14.
193. Liu, G.; Li, Y.; Gao, J.; et al. Structure evolution, ferroelectric properties, and energy storage performance of CaSnO3 modified BaTiO3-based Pb-free ceramics. J. Alloys. Compd. 2020, 826, 154160.
194. Zhang, L.; Pu, X.; Chen, M.; Bai, S.; Pu, Y. Influence of BaSnO3 additive on the energy storage properties of Na0.5Bi0.5TiO3-based relaxor ferroelectrics. J. Eur. Ceram. Soc. 2018, 38, 2304-11.
195. Yu, Y.; Zhang, Y.; Zhang, Y.; et al. High-temperature energy storage performances in (1-x)(Na0.50Bi0.50TiO3)-xBaZrO3 lead-free relaxor ceramics. Ceram. Int. 2020, 46, 28652-8.
196. Zou, X.; Liu, S.; Qiu, G.; et al. Improved energy storage performance at the phase boundary in BaTiO3-based film capacitors. J. Power. Sources. 2024, 619, 235201.
197. Guo, X.; Shi, P.; Lou, X.; Liu, Q.; Zuo, H. Superior energy storage properties in (1-x)(0.65Bi0.5Na0.5TiO3-0.35Bi0.2Sr0.7TiO3)-xCaZrO3 ceramics with excellent temperature stability. J. Alloys. Compd. 2021, 876, 160101.
198. Zuo, R.; Fu, J.; Qi, H. Stable antiferroelectricity with incompletely reversible phase transition and low volume-strain contribution in BaZrO3 and CaZrO3 substituted NaNbO3 ceramics. Acta. Materialia. 2018, 161, 352-9.
199. Liu, G.; Chen, L.; Qi, H. Energy storage properties of NaNbO3-based lead-free superparaelectrics with large antiferrodistortion. Microstructures 2023, 3, 2023009.
200. Xue, G.; Zhou, X.; Yan, Z.; Liu, G.; Luo, H.; Zhang, D. Temperature-stable Na0.5Bi0.5TiO3-based relaxor ceramics with high permittivity and large energy density under low electric fields. J. Alloys. Compd. 2021, 882, 160755.
201. Ren, P.; Liu, Z.; Wang, X.; et al. Dielectric and energy storage properties of SrTiO3 and SrZrO3 modified Bi0.5Na0.5TiO3-Sr0.8Bi0.1□0.1TiO3 based ceramics. J. Alloys. Compd. 2018, 742, 683-9.
202. Jiang, Y.; Liu, J.; Zhang, W.; et al. Comprehensively improved energy storage and DC-bias properties in Bi0.5Na0.5TiO3NaNbO3 based relaxor antiferroelectric. J. Materiomics. 2025, 11, 100917.
203. Zhang, M. H.; Ding, H.; Egert, S.; et al. Tailoring high-energy storage NaNbO3-based materials from antiferroelectric to relaxor states. Nat. Commun. 2023, 14, 1525.
204. Zhang, Y.; Zhang, X.; Zhang, J.; Zhao, J.; Ren, W.; Yue, Z. Multi-scale domain enhanced energy storage performance in lead-free Bi0.5Na0.5TiO3-based complex perovskites with low sintering temperature. J. Power. Sources. 2025, 641, 236845.
205. Wang, Z.; Kang, R.; Liu, W.; et al. (Bi0.5Na0.5)TiO3-based relaxor ferroelectrics with medium permittivity featuring enhanced energy-storage density and excellent thermal stability. Chem. Eng. J. 2022, 427, 131989.
206. Han, K.; Luo, N.; Mao, S.; et al. Realizing high low-electric-field energy storage performance in AgNbO3 ceramics by introducing relaxor behaviour. J. Materiomics. 2019, 5, 597-605.
207. Li, J.; Jin, L.; Tian, Y.; et al. Enhanced energy storage performance under low electric field in Sm3+ doped AgNbO3 ceramics. J. Materiomics. 2022, 8, 266-73.
208. Liu, Y.; Niu, R.; Uriach, R.; et al. Coexistence of ferroelectric and ferrielectric phases in ultrathin antiferroelectric PbZrO3 thin films. Microstructures 2024, 4, 2024045.
209. Xu, R.; Tian, J.; Zhu, Q.; et al. Effects of La-induced phase transition on energy storage and discharge properties of PLZST ferroelectric/antiferroelectric ceramics. Ceram. Int. 2017, 43, 13918-23.
210. Zhang, Y.; Liu, P.; Kandula, K. R.; et al. Achieving excellent energy storage density of Pb0.97La0.02(ZrxSn0.05Ti0.95-x)O3 ceramics by the B-site modification. J. Eur. Ceram. Soc. 2021, 41, 360-7.
211. Xu, R.; Li, B.; Tian, J.; et al. Pb0.94La0.04[(Zr0.70Sn0.30)0.90Ti0.10]O3 antiferroelectric bulk ceramics for pulsed capacitors with high energy and power density. Appl. Phys. Lett. 2017, 110, 142904.
212. Meng, X.; Zhao, Y.; Li, Y.; Hao, X. Systematical investigation on energy-storage behavior of PLZST antiferroelectric ceramics by composition optimizing. J. Am. Ceram. Soc. 2021, 104, 2170-80.
213. Liu, X.; Li, Y.; Sun, N.; Hao, X. High energy-storage performance of PLZS antiferroelectric multilayer ceramic capacitors. Inorg. Chem. Front. 2020, 7, 756-64.
214. Wang, H.; Liu, Y.; Yang, T.; Zhang, S. Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. Adv. Funct. Mater. 2019, 29, 1807321.
215. Liu, X.; Zhao, Y.; Sun, N.; Li, Y.; Hao, X. Ultra-high energy density induced by diversified enhancement effects in (Pb0.98-xLa0.02Cax)(Zr0.7Sn0.3)0.995O3 antiferroelectric multilayer ceramic capacitors. Chem. Eng. J. 2021, 417, 128032.
216. Ge, G.; Shi, C.; Chen, C.; et al. Tunable domain switching features of incommensurate antiferroelectric ceramics realizing excellent energy storage properties. Adv. Mater. 2022, 34, e2201333.
217. Jiang, S.; Zhang, J.; Wang, J.; Wang, S.; Wang, J.; Wang, Y. Delayed phase switching field and improved capacitive energy storage in Ca2+-modified (Pb,La)(Zr,Sn)O3 antiferroelectric ceramics. Scripta. Mater. 2023, 235, 115602.
218. Fan, Z.; Ma, T.; Wei, J.; Yang, T.; Zhou, L.; Tan, X. TEM investigation of the domain structure in PbHfO3 and PbZrO3 antiferroelectric perovskites. J. Mater. Sci. 2020, 55, 4953-61.
219. Li, Y.; Yang, T.; Liu, X. Improving energy storage properties of PbHfO3 -based antiferroelectric ceramics with lower phase transition fields. Inorg. Chem. Front. 2023, 11, 196-206.
220. Guo, J.; Yang, T. Giant energy storage density in Ba, La co-doped PbHfO3-based antiferroelectric ceramics by a rolling process. J. Alloy. Compd. 2021, 888, 161539.
221. Wan, H.; Liu, Z.; Zhuo, F.; et al. Synergistic design of a new PbHfO3 -based antiferroelectric solid solution with high energy storage and large strain performances under low electric fields. J. Mater. Chem. A. 2023, 11, 25484-96.
222. Tian, Y.; Song, P.; Viola, G.; et al. Silver niobate perovskites: structure, properties and multifunctional applications. J. Mater. Chem. A. 2022, 10, 14747-87.
223. Tian, Y.; Jin, L.; Hu, Q.; et al. Phase transitions in tantalum-modified silver niobate ceramics for high power energy storage. J. Mater. Chem. A. 2019, 7, 834-42.
224. Tian, Y.; Jin, L.; Zhang, H.; et al. Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage. J. Mater. Chem. A. 2017, 5, 17525-31.
225. Tang, T.; Liu, D.; Wang, Q.; et al. AgNbO3-based multilayer capacitors: heterovalent-ion-substitution engineering achieves high energy storage performances. ACS. Appl. Mater. Interfaces. 2023, 15, 45128-36.
226. Tang, T.; Liu, D.; Wang, L.; et al. Ultrahigh energy storage density and efficiency of antiferroelectric AgNbO3-based MLCCs via reducing the off-center cations displacement. Chem. Eng. J. 2025, 503, 158557.
227. Tang, T.; Liu, J.; Liu, D.; et al. Self-generated glass-ceramics-like structure boosts energy storage performance of AgNbO3-based MLCC. Adv. Funct. Mater. 2025, 35, 2425711.
228. Hu, Q.; Tian, Y.; Zhu, Q.; et al. Achieve ultrahigh energy storage performance in BaTiO3-Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano. Energy. 2020, 67, 104264.
229. Xie, A.; Zuo, R.; Qiao, Z.; Fu, Z.; Hu, T.; Fei, L. NaNbO3-(Bi0.5Li0.5)TiO3 lead-free relaxor ferroelectric capacitors with superior energy-storage performances via multiple synergistic design. Adv. Energy. Mater. 2021, 11, 2101378.
230. Chen, L.; Yu, H.; Wu, J.; et al. Large energy capacitive high-entropy lead-free ferroelectrics. Nano. Micro. Lett. 2023, 15, 65.
231. Zhang, M.; Lan, S.; Yang, B. B.; et al. Ultrahigh energy storage in high-entropy ceramic capacitors with polymorphic relaxor phase. Science 2024, 384, 185-9.
232. Chen, L.; Wang, N.; Zhang, Z.; et al. Local diverse polarization optimized comprehensive energy-storage performance in lead-free superparaelectrics. Adv. Mater. 2022, 34, e2205787.
233. Gao, Y.; Song, Z.; Hu, H.; et al. Optimizing high-temperature energy storage in tungsten bronze-structured ceramics via high-entropy strategy and bandgap engineering. Nat. Commun. 2024, 15, 5869.
234. Peng, H.; Wu, T.; Liu, Z.; et al. High-entropy relaxor ferroelectric ceramics for ultrahigh energy storage. Nat. Commun. 2024, 15, 5232.
235. Yang, B.; Zhang, Y.; Pan, H.; et al. High-entropy enhanced capacitive energy storage. Nat. Mater. 2022, 21, 1074-80.
236. Yang, B.; Zhang, Q.; Huang, H.; et al. Engineering relaxors by entropy for high energy storage performance. Nat. Energy. 2023, 8, 956-64.
237. Duan, J.; Wei, K.; Du, Q.; et al. High-entropy superparaelectrics with locally diverse ferroic distortion for high-capacitive energy storage. Nat. Commun. 2024, 15, 6754.
238. Wang, H.; Zhang, J.; Jiang, S.; Wang, J.; Wang, J.; Wang, Y. (Bi1/6Na1/6Ba1/6Sr1/6Ca1/6Pb1/6)TiO3 -based high-entropy dielectric ceramics with ultrahigh recoverable energy density and high energy storage efficiency. J. Mater. Chem. A. 2023, 11, 4937-45.
239. Liu, J.; Ren, K.; Ma, C.; Du, H.; Wang, Y. Dielectric and energy storage properties of flash-sintered high-entropy (Bi0.2Na0.2K0.2Ba0.2Ca0.2)TiO3 ceramic. Ceram. Int. 2020, 46, 20576-81.
240. Li, W.; Shen, Z. H.; Liu, R. L.; et al. Generative learning facilitated discovery of high-entropy ceramic dielectrics for capacitive energy storage. Nat. Commun. 2024, 15, 4940.
241. Zhang, S. High entropy design: a new pathway to promote the piezoelectricity and dielectric energy storage in perovskite oxides. Microstructures 2022, 3, 2023003.
242. Chen, L.; Deng, S.; Liu, H.; Wu, J.; Qi, H.; Chen, J. Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design. Nat. Commun. 2022, 13, 3089.
243. Zhang, L.; Zhao, M.; Yang, Y.; et al. Achieving ultrahigh energy density and ultrahigh efficiency simultaneously via characteristic regulation of polar nanoregions. Chem. Eng. J. 2023, 465, 142862.
244. Liu, L.; Chen, K.; Wang, D.; et al. Size and orientation of polar nanoregions characterized by PDF analysis and using a statistical model in a Bi(Mg1/2Ti1/2)O3-PbTiO3 ferroelectric re-entrant relaxor. J. Mater. Chem. A. 2024, 12, 11580-90.
245. Xu, Y.; Hou, Y.; Song, B.; Cheng, H.; Zheng, M.; Zhu, M. Superior ultra-high temperature multilayer ceramic capacitors based on polar nanoregion engineered lead-free relaxor. J. Eur. Ceram. Soc. 2020, 40, 4487-94.
246. Zhang, Y.; Yan, M.; Zhang, Z.; et al. Enhanced energy storage properties and good stability of novel (1-x)Na0.5Bi0.5TiO3-xCa(Mg1/3Nb2/3)O3 relaxor ferroelectric ceramics prepared by chemical modification. J. Materiomics. 2024, 10, 770-82.
247. Zhou, Z.; Bai, W.; Liu, N.; et al. Ultrahigh capacitive energy storage of BiFeO3-based ceramics through multi-oriented nanodomain construction. Nat. Commun. 2025, 16, 2075.
248. Shi, W.; Zhang, L.; Jing, R.; et al. Relaxor antiferroelectric-like characteristic boosting enhanced energy storage performance in eco-friendly (Bi0.5Na0.5)TiO3-based ceramics. J. Eur. Ceram. Soc. 2022, 42, 4528-38.
249. Shi, W.; Zhang, L.; Jing, R.; et al. Moderate fields, maximum potential: achieving high records with temperature-stable energy storage in lead-free BNT-based ceramics. Nano. Micro. Lett. 2024, 16, 91.
250. Pan, H.; Li, F.; Liu, Y.; et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019, 365, 578-82.
251. Liu, J.; Xi, K.; Song, B.; et al. Boosting ultra-wide temperature dielectric stability of multilayer ceramic capacitor through tailoring the combination types of polar nanoregions. J. Materiomics. 2024, 10, 751-61.
252. Pan, H.; Ma, J.; Ma, J.; et al. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat. Commun. 2018, 9, 1813.
253. Zha, J.; Yang, Y.; Liu, J.; et al. High energy storage performance of KNN-based relaxor ferroelectrics in multiphase-coexisted superparaelectric state. J. Appl. Phys. 2024, 136, 074101.
254. Zeng, X.; Lin, J.; Chen, Y.; et al. Superior energy storage capability and fluorescence negative thermal expansion of NaNbO3-based transparent ceramics by synergistic optimization. Small 2024, 20, e2309992.
255. Xi, J.; Liu, J.; Bai, W.; et al. Polymorphic heterogeneous polar structure enabled superior capacitive energy storage in lead-free relaxor ferroelectrics at low electric field. Small 2024, 20, e2400686.
256. Xu, S.; Han, M.; Zhu, Z.; et al. Excellent energy-storage performance realized in SANNS-based tungsten bronze ceramics via synergistic optimization strategy. J. Materiomics. 2025, 11, 100930.
257. Chai, Q.; Liu, Z.; Deng, Z.; et al. Excellent energy storage properties in lead-free ferroelectric ceramics via heterogeneous structure design. Nat. Commun. 2025, 16, 1633.
258. Ma, Q.; Chen, L.; Yu, H.; et al. Excellent energy-storage performance in lead-free capacitors with highly dynamic polarization heterogeneous nanoregions. Small 2023, 19, e2303768.
259. Pan, H.; Lan, S.; Xu, S.; et al. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science 2021, 374, 100-4.
260. Shi, X.; Wang, J.; Xu, J.; Cheng, X.; Huang, H. Quantitative investigation of polar nanoregion size effects in relaxor ferroelectrics. Acta. Materialia. 2022, 237, 118147.
261. Chen, X.; Shen, Z. H.; Liu, R. L.; et al. Programming polarity heterogeneity of energy storage dielectrics by bidirectional intelligent design. Adv. Mater. 2024, 36, e2311721.
262. Shu, L.; Shi, X.; Zhang, X.; et al. Partitioning polar-slush strategy in relaxors leads to large energy-storage capability. Science 2024, 385, 204-9.
263. Qian, J.; Yu, Z.; Ge, G.; et al. Topological vortex domain engineering for high dielectric energy storage performance. Adv. Energy. Mater. 2024, 14, 2303409.
264. Liu, Y.; Zhang, Y.; Wang, J.; et al. Ultrahigh capacitive energy storage through dendritic nanopolar design. Science 2025, 388, 211-6.
265. Han, H.; Li, W.; Zhang, Q.; et al. Electric field-manipulated optical chirality in ferroelectric vortex domains. Adv. Mater. 2024, 36, e2408400.
266. Pan, Y.; Dong, Q.; Huang, J.; Chen, X.; Li, X.; Zhou, H. Realizing enhanced energy storage performance of Na0.47Bi0.47Ba0.06TiO3-based relaxors with weak coupling behavior by manipulating phase fraction. Chem. Eng. J. 2024, 497, 154695.
267. Pan, Y.; Dong, Q.; Zeng, D.; et al. Enhanced energy storage performance of NaNbO3-based ceramics by constructing weakly coupled relaxor behavior. J. Energy. Storage. 2024, 82, 110597.
268. Gao, Y.; Qiao, W.; Lou, X.; et al. Ultrahigh energy storage in tungsten bronze dielectric ceramics through a weakly coupled relaxor design. Adv. Mater. 2024, 36, e2310559.
269. Wang, H.; Wu, S.; Fu, B.; et al. Hierarchically polar structures induced superb energy storage properties for relaxor Bi0.5Na0.5TiO3-based ceramics. Chem. Eng. J. 2023, 471, 144446.
270. Xie, A.; Fu, J.; Zuo, R.; et al. Supercritical relaxor nanograined ferroelectrics for ultrahigh-energy-storage capacitors. Adv. Mater. 2022, 34, e2204356.
271. Li, Y.; Liu, Y.; Tang, M.; et al. Energy storage performance of BaTiO3-based relaxor ferroelectric ceramics prepared through a two-step process. Chem. Eng. J. 2021, 419, 129673.
272. Wang, G.; Li, J.; Zhang, X.; et al. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energy. Environ. Sci. 2019, 12, 582-8.
273. Zhao, W.; Xu, D.; Li, D.; et al. Broad-high operating temperature range and enhanced energy storage performances in lead-free ferroelectrics. Nat. Commun. 2023, 14, 5725.
274. Gao, J.; Li, Q.; Zhang, S.; Li, J. Lead-free antiferroelectric AgNbO3: Phase transitions and structure engineering for dielectric energy storage applications. J. Appl. Phys. 2020, 128, 070903.
275. Hu, J.; Pan, Z.; Lv, L.; et al. Enhanced energy storage capabilities in PbHfO3-based antiferroelectric ceramics through delayed phase switching and induced multiphase transitions. Inorg. Chem. Front. 2024, 11, 4187-96.
276. Zhao, L.; Liu, Q.; Gao, J.; Zhang, S.; Li, J. F. Lead-Free antiferroelectric silver niobate tantalate with high energy storage performance. Adv. Mater. 2017, 29.
277. Li, D.; Meng, X.; Zhou, E.; et al. Ultrahigh energy density of antiferroelectric PbZrO3-based films at low electric field. Adv. Funct. Mater. 2023, 33, 2302995.
278. Chao, W.; Hao, J.; Du, J.; Li, P.; Li, W.; Yang, T. Improving energy storage performance enabled by composition-induced dielectric behavior in PbHfO3-based ceramics under low electric fields. J. Mater. Chem. C. 2024, 12, 14590-6.
279. Li, Z.; Fu, Z.; Cai, H.; et al. Discovery of electric devil’s staircase in perovskite antiferroelectric. Sci. Adv. 2022, 8, eabl9088.
280. Li, C.; Yao, M.; Yang, T.; Yao, X. Optimizing energy storage performance of lead zirconate-based antiferroelectric ceramics by a phase modulation strategy. Chem. Eng. J. 2024, 497, 154913.
281. Hu, T.; Fu, Z.; Li, Z.; et al. Decoding the double/multiple hysteresis loops in antiferroelectric materials. ACS. Appl. Mater. Interfaces. 2021, 13, 60241-9.
282. Hu, T.; Fu, Z.; Liu, X.; et al. Giant enhancement and quick stabilization of capacitance in antiferroelectrics by phase transition engineering. Nat. Commun. 2024, 15, 9293.
283. Hu, T.; Fu, Z.; Li, Z.; et al. Electric-induced devil’s staircase in perovskite antiferroelectric. J. Appl. Phys. 2022, 131, 214105.
284. Quan, K.; Zhao, Y.; Meng, X.; et al. High-performance antiferroelectric ceramics via multistage phase transition. J. Am. Ceram. Soc. 2023, 106, 420-9.
285. Chen, C.; Qian, J.; Lin, J.; et al. PYN-based antiferroelectric ceramics with superior energy storage performance within an ultra-wide temperature range. Acta. Materialia. 2024, 278, 120225.
286. Lou, K.; Bao, Y.; Chai, J.; et al. Achieving high energy density/efficiency in light-metal-element-rich relaxor ferroelectric ceramics by annihilating volatile Schottky defects. J. Mater. Chem. A. 2024, 12, 12198-207.
287. Hennings, D. F. Dielectric materials for sintering in reducing atmospheres. J. Eur. Ceram. Soc. 2001, 21, 1637-42.
288. Wang, X.; Sun, H.; Wang, M.; et al. Low-temperature sintering of PLSZT-based antiferroelectric ceramics in reducing atmosphere for energy storage. J. Eur. Ceram. Soc. 2024, 44, 898-906.
289. Zhen, Y.; Xiao, M.; Cheng, X.; Zhu, C.; Yu, Y.; Wang, X. Defect control of Yb-doped dielectric ceramics on improving the reliability for MLCC application. Ceram. Int. 2023, 49, 12097-104.
290. Wang, M.; Xue, K.; Zhang, K.; Li, L. Dielectric properties of BaTiO3-based ceramics are tuned by defect dipoles and oxygen vacancies under a reducing atmosphere. Ceram. Int. 2022, 48, 22212-20.
291. Zhang, Y.; Jia, Y.; Yang, J.; et al. Enhancing energy storage performance of 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 lead-free ferroelectric ceramics via buried sintering. Materials 2024, 17, 4019.
292. Moradi, P.; Taheri-Nassaj, E.; Yourdkhani, A.; Mykhailovych, V.; Diaconu, A.; Rotaru, A. Enhanced energy storage performance in reaction-sintered AgNbO3 antiferroelectric ceramics. Dalton. Trans. 2023, 52, 4462-74.
293. Chen, B.; Peng, Z.; Qiao, X.; et al. Influence of milling speed of high energy mechanochemical technique on microstructure and electrical properties of K0.5Na0.5NbO3 ceramics. J. Mater. Sci. Mater. Electron. 2024, 35, 50.
294. Zhang, Y.; Shen, Y.; Tang, L.; Chen, J.; Pan, Z. Modulation of oxygen vacancies optimized energy storage density in BNT-based ceramics via a defect engineering strategy. J. Mater. Chem. C. 2024, 12, 13343-52.
295. Che, Z.; Ma, L.; Luo, G.; et al. Phase structure and defect engineering in (Bi0.5Na0.5)TiO3-based relaxor antiferroelectrics toward excellent energy storage performance. Nano. Energy. 2022, 100, 107484.
296. Lu, Z.; Wang, G.; Bao, W.; et al. Superior energy density through tailored dopant strategies in multilayer ceramic capacitors. Energy. Environ. Sci. 2020, 13, 2938-48.
297. Jeon, S.; Kim, S.; Moon, K. Interface structure dependent step free energy and grain growth behavior of core/shell grains in (Y, Mg)-doped BaTiO3 containing a liquid phase. J. Eur. Ceram. Soc. 2022, 42, 2804-12.
298. Liu, S.; Zhang, F.; Gu, Y.; Luo, J.; Liu, Z. Effect of BaO addition on core-shell structure and electric properties of BaTiO3-based dielectrics for high-end MLCCs. Ceram. Int. 2024, 50, 43144-52.
299. Zhang, K.; Li, L.; Wang, M.; Luo, W. Charge compensation in rare earth doped BaTiO3-based ceramics sintered in reducing atmosphere. Ceram. Int. 2020, 46, 25881-7.
300. Peng, W.; Li, L.; Yu, S.; Yang, P.; Xu, K. Dielectric properties, microstructure and charge compensation of MnO2-doped BaTiO3-based ceramics in a reducing atmosphere. Ceram. Int. 2021, 47, 29191-6.
301. Zhang, J.; Hao, H.; Guo, Q.; Yao, Z.; Cao, M.; Liu, H. Dielectric and anti-reduction properties of BaTiO3-based ceramics for MLCC application. Ceram. Int. 2023, 49, 24941-7.
302. Luo, Z.; Hao, H.; Chen, C.; et al. Dielectric and anti-reduction properties of (1-x)BaTiO3-xBi(Zn0.5Y0.5)O2.75 ceramics for BME-MLCC application. J. Alloys. Compd. 2019, 794, 358-64.
303. Xi, J.; Lin, L.; Bai, W.; et al. Compromise boosted high capacitive energy storage in lead-free (Bi0.5Na0.5)TiO3 -based relaxor ferroelectrics by phase structure modulation and defect engineering. Chem. Eng. J. 2024, 502, 157986.
304. Li, Z.; Li, D.; Shen, Z.; et al. Remarkably enhanced dielectric stability and energy storage properties in BNT-BST relaxor ceramics by A-site defect engineering for pulsed power applications. J. Adv. Ceram. 2022, 11, 283-94.
305. Hu, P.; Yao, M.; Yang, T.; Yao, X. Ultrahigh energy storage density and efficiency achieved in PbZrO3-based antiferroelectric ceramics via phase modulation engineering. ACS. Appl. Mater. Interfaces. 2025, 17, 26881-91.
306. Li, J.; Li, F.; Xu, Z.; Zhang, S. Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv. Mater. 2018, 30, e1802155.
307. Liu, X.; Shi, J.; Zhu, F.; et al. Ultrahigh energy density and improved discharged efficiency in bismuth sodium titanate based relaxor ferroelectrics with A-site vacancy. J. Materiomics. 2018, 4, 202-7.
308. Ren, X. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 2004, 3, 91-4.
309. Huangfu, G.; Zeng, K.; Wang, B.; et al. Giant electric field-induced strain in lead-free piezoceramics. Science 2022, 378, 1125-30.
310. Hou, D.; Liu, X.; Li, Y.; et al. Effects of thickness and defect on ultrahigh electro strain of piezoelectric ceramics. Ceram. Int. 2024, 50, 39918-26.
311. Zhang, L.; Jing, R.; Huang, Y.; et al. Enhanced antiferroelectric-like relaxor ferroelectric characteristic boosting energy storage performance of (Bi0.5Na0.5)TiO3-based ceramics via defect engineering. J. Materiomics. 2022, 8, 527-36.
312. Abbas, W.; Ibrahim, M. S.; Waseem, M.; et al. Defect and texture engineering of relaxor thin films for high-power energy storage applications. Chem. Eng. J. 2024, 482, 148943.
313. Luo, Y.; Zheng, T.; Liu, S.; Liu, Y.; Lyu, Y.; Luo, J. Ultrahigh energy storage performance via defect engineering in Sr0.7Bi0.2TiO3 lead-free relaxor ferroelectrics. J. Materiomics. 2025, 11, 101065.
314. Long, C.; zhou, W.; Liu, L.; et al. Achieving excellent energy storage performances and eminent charging-discharging capability in donor (1-x)BT-x(BZN-Nb) relaxor ferroelectric ceramics. Chem. Eng. J. 2023, 459, 141490.
315. Li, P.; Wang, S.; Qian, J.; et al. Local defect structure design enhanced energy storage performance in lead-free antiferroelectric ceramics. Chem. Eng. J. 2024, 497, 154926.
316. Zeng, X.; Lin, J.; Dong, G.; et al. Polymorphic relaxor phase and defect dipole polarization co-reinforced capacitor energy storage in temperature-monitorable high-entropy ferroelectrics. Nat. Commun. 2025, 16, 1870.
317. Zhao, X.; Bai, W.; Ding, Y.; et al. Tailoring high energy density with superior stability under low electric field in novel (Bi0.5Na0.5)TiO3-based relaxor ferroelectric ceramics. J. Eur. Ceram. Soc. 2020, 40, 4475-86.
318. Samara, G. A. The relaxational properties of compositionally disordered ABO3 perovskites. J. Phys. Condens. Matter. 2003, 15, R367-411.
319. Bonardd, S.; Moreno-Serna, V.; Kortaberria, G.; Díaz, Díaz. D.; Leiva, A.; Saldías, C. Dipolar glass polymers containing polarizable groups as dielectric materials for energy storage applications. a minireview. Polymers 2019, 11, 317.
320. Blinc, R.; Laguta, V. V.; Zalar, B.; Banys, J. Polar nanoclusters in relaxors. J. Mater. Sci. 2006, 41, 27-30.
321. Zhang, X.; Pu, Y.; Ning, Y.; et al. Realizing ultrahigh energy-storage density in Ca0.5Sr0.5TiO3-based linear ceramics over broad temperature range. Chem. Eng. J. 2023, 471, 144619.
322. Wang, W.; Pu, Y.; Guo, X.; Shi, R.; Yang, M.; Li, J. Combining high energy efficiency and fast charge-discharge capability in calcium strontium titanate-based linear dielectric ceramic for energy-storage. Ceram. Int. 2020, 46, 11484-91.
323. Zhang, X.; Pu, Y.; Gao, P.; et al. Linear dielectric ceramics for near-zero loss high-capacitance energy storage. Mater. Today. Phys. 2024, 49, 101579.
324. Fu, J.; Xie, A.; Zuo, R.; et al. A highly polarizable concentrated dipole glass for ultrahigh energy storage. Nat. Commun. 2024, 15, 7338.
325. Wang, X.; Song, X.; Fan, Y.; et al. Lead-free high permittivity quasi-linear dielectrics for giant energy storage multilayer ceramic capacitors with broad temperature stability. Adv. Energy. Mater. 2024, 14, 2400821.
326. Zhang, L.; Chen, J.; Fan, L.; et al. Giant polarization in super-tetragonal thin films through interphase strain. Science 2018, 361, 494-7.
327. Li, H.; Fu, Y.; Alhashmialameer, D.; et al. Lattice distortion embedded core-shell nanoparticle through epitaxial growth barium titanate shell on the strontium titanate core with enhanced dielectric response. Adv. Compos. Hybrid. Mater. 2022, 5, 2631-41.
328. Huan, Y.; Wu, L.; Xu, L.; Li, P.; Wei, T. Superior energy-storage density and ultrahigh efficiency in KNN-based ferroelectric ceramics via high-entropy design. J. Materiomics. 2025, 11, 100862.
329. Zhu, B.; Zhang, J.; Long, F.; et al. Boosting energy-storage in high-entropy pb-free relaxors engineered by local lattice distortion. J. Am. Chem. Soc. 2024, 146, 29694-702.
330. Xi, J.; Liu, J.; Bai, W.; et al. Design of lead-free high-entropy quasi-linear dielectrics with giant comprehensive electrostatic energy storage. Acta. Materialia. 2025, 289, 120931.
331. Li, F.; Jin, L.; Xu, Z.; Zhang, S. Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Appl. Phys. Rev. 2014, 1, 011103.
332. Covaci, C.; Gontean, A. “Singing” multilayer ceramic capacitors and mitigation methods-a review. Sensors 2022, 22, 3869.
333. Laadjal, K.; Cardoso, A. J. M. Multilayer ceramic capacitors: an overview of failure mechanisms, perspectives, and challenges. Electronics 2023, 12, 1297.
334. Xu, K.; Tang, S.; Guo, C.; Song, Y.; Huang, H. Antiferroelectric domain modulation enhancing energy storage performance by phase-field simulations. J. Materiomics. 2025, 11, 100901.
335. Shi, X.; Liu, J.; Huang, H. Designing ferroelectric material microstructure for energy storage performance: insight from phase-field simulation. Sci. Bull. 2025, 70, 1550-3.
336. Xu, K.; Shi, X.; Liu, Z.; et al. Multi-scale design of high energy storage performance ferroelectrics by phase-field simulations. Sci. Bull. 2025, 70, 474-7.







