REFERENCES

1. Lu, K. The future of metals. Science 2010, 328, 319-20.

2. Sun, W.; Zhu, Y.; Marceau, R.; et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity. Science 2019, 363, 972-5.

3. Xue, H.; Yang, C.; De, Geuser. F.; et al. Highly stable coherent nanoprecipitates via diffusion-dominated solute uptake and interstitial ordering. Nat. Mater. 2023, 22, 434-41.

4. Raabe, D.; Tasan, C. C.; Olivetti, E. A. Strategies for improving the sustainability of structural metals. Nature 2019, 575, 64-74.

5. Xu, X.; Wu, G.; Tong, X.; et al. Achieving superior strength-ductility balance by tailoring dislocation density and shearable GP zone of extruded Al-Cu-Li alloy. Int. J. Plasticity. 2024, 182, 104135.

6. Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 2011, 10, 817-22.

7. Liu, Z.; Meyers, M. A.; Zhang, Z.; Ritchie, R. O. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Prog. Mater. Sci. 2017, 88, 467-98.

8. Zhu, Y.; Wu, X. Heterostructured materials. Prog. Mater. Sci. 2023, 131, 101019.

9. Hassanpour, H.; Jamaati, R.; Hosseinipour, S. J. A novel technique to form gradient microstructure in AA5052 alloy. Mater. Sci. Eng. A. 2020, 777, 139075.

10. Jiang, H.; Xing, H.; Xu, Z.; Feng, J.; Zhang, J.; Sun, B. Achieving superior strength-ductility balance in novel heterogeneous lamella structures of Al-Zn-Mg-Cu alloys. J. Mater. Sci. Technol. 2024, 184, 122-35.

11. Li, G.; Liu, M.; Lyu, S.; et al. Simultaneously enhanced strength and strain hardening capacity in FeMnCoCr high-entropy alloy via harmonic structure design. Scr. Mater. 2021, 191, 196-201.

12. Liu, J.; Liu, C.; Cai, H.; et al. Enhanced precipitate strengthening in particulates reinforced Al-Zn-Mg-Cu composites via bimodal structure design and optimum aging strategy. Compos. Part. B. Eng. 2023, 260, 110772.

13. Peng, Y.; Li, C.; Song, M.; et al. Breaking the strength-ductility trade-off in aluminum matrix composite through "dual-metal" heterogeneous structure and interface control. Int. J. Plasticity. 2025, 185, 104216.

14. Rong, X.; Zhao, D.; He, C.; Shi, C.; Liu, E.; Zhao, N. Revealing the strengthening and toughening mechanisms of Al-CuO composite fabricated via in-situ solid-state reaction. Acta. Mater. 2021, 204, 116524.

15. Zhang, Y.; Chen, R.; Hu, Y.; Wang, C.; Shen, Y.; Wang, X. Phase-specific tailoring strategy for synergetic and prolonged work hardening to achieve superior strength-plasticity in lamellar-structured alloy. Int. J. Plasticity. 2025, 188, 104317.

16. Nie, J.; Chen, Y.; Song, L.; et al. Enhancing strength and ductility of Al-matrix composite via a dual-heterostructure strategy. Int. J. Plasticity. 2023, 171, 103825.

17. Liu, L.; Li, S.; Pan, D.; et al. Loss-free tensile ductility of dual-structure titanium composites via an interdiffusion and self-organization strategy. Proc. Natl. Acad. Sci. USA. 2023, 120, e2302234120.

18. Zhang, X.; Yuan, H.; Huang, F.; et al. Enhanced strength-plasticity synergy of copper composites by designing uniformly dispersed yttria nanoparticles and a heterogeneous grain structure. Rare. Met. 2024, 43, 6704-16.

19. Xie, Y.; Lu, T.; Sun, B.; et al. Discontinuous precipitation enables an exceptional cryogenic strength-strain hardening synergy in a heterostructured medium entropy alloy. Acta. Mater. 2025, 290, 120955.

20. Li, X.; Lu, L.; Li, J.; Zhang, X.; Gao, H. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nat. Rev. Mater. 2020, 5, 706-23.

21. Zhu, Y.; Wu, X. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater. Res. Lett. 2019, 7, 393-8.

22. Shi, P.; Shen, Z.; Wang, H.; et al. Bioinspired, heredity-derived hierarchical bulk multifunctional copper alloys. Mater. Today. 2023, 71, 22-37.

23. Chen, H.; He, Y.; Dash, S. S.; Zou, Y. Additive manufacturing of metals and alloys to achieve heterogeneous microstructures for exceptional mechanical properties. Mater. Res. Lett. 2024, 12, 149-71.

24. Dong, X.; Gao, B.; Xiao, L.; et al. Heterostructured metallic structural materials: research methods, properties, and future perspectives. Adv. Funct. Mater. 2024, 34, 2410521.

25. Ji, W.; Zhou, R.; Vivegananthan, P.; See, Wu. M.; Gao, H.; Zhou, K. Recent progress in gradient-structured metals and alloys. Prog. Mater. Sci. 2023, 140, 101194.

26. Wang, C.; Guo, M.; Chi, X.; Zhuang, L.; Niewczas, M. Dual gradient structure in Al-Zn-Mg-Cu-Fe alloys: a pathway to balancing strength and formability. Scr. Mater. 2025, 259, 116566.

27. Wu, R.; Choi, Y. T.; Wu, Q.; et al. Enhanced strength-ductility synergy in a gradient pseudo-precipitates heterostructured Al-2.5%Mg alloy: design, fabrication, and deformation mechanism. J. Mater. Sci. Technol. 2024, 196, 88-100.

28. Gu, D.; Shi, X.; Poprawe, R.; Bourell, D. L.; Setchi, R.; Zhu, J. Material-structure-performance integrated laser-metal additive manufacturing. Science 2021, 372, eabg1487.

29. Bandyopadhyay, A.; Traxel, K. D.; Lang, M.; Juhasz, M.; Eliaz, N.; Bose, S. Alloy design via additive manufacturing: advantages, challenges, applications and perspectives. Mater. Today. 2022, 52, 207-24.

30. Aboulkhair, N. T.; Simonelli, M.; Parry, L.; Ashcroft, I.; Tuck, C.; Hague, R. 3D printing of Aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting. Prog. Mater. Sci. 2019, 106, 100578.

31. Yang, H.; Sha, J.; Zhao, D.; et al. Defects control of aluminum alloys and their composites fabricated via laser powder bed fusion: a review. J. Mater. Proc. Technol. 2023, 319, 118064.

32. Chua, C.; An, J.; Chua, C. K.; Kuo, C.; Sing, S. L. Microstructure control for inoculated high-strength aluminum alloys fabricated by additive manufacturing: a state-of-the-art review. Prog. Mater. Sci. 2025, 154, 101502.

33. Tan, Q.; Zhang, M. Recent advances in inoculation treatment for powder-based additive manufacturing of aluminium alloys. Mater. Sci. Eng. R. Rep. 2024, 158, 100773.

34. Huang, J.; Yang, W.; Gao, Z.; Hou, X.; Yan, X. Heterostructured multi-principal element alloys prepared by laser-based techniques. Microstructures 2025, 5, 2025021.

35. Deng, J.; Chen, C.; Liu, X.; Li, Y.; Zhou, K.; Guo, S. A high-strength heat-resistant Al-5.7Ni eutectic alloy with spherical Al3Ni nano-particles by selective laser melting. Scr. Mater. 2021, 203, 114034.

36. Qi, Y.; Zhang, H.; Yang, X.; et al. Achieving superior high-temperature mechanical properties in Al-Cu-Li-Sc-Zr alloy with nano-scale microstructure via laser additive manufacturing. Mater. Res. Lett. 2024, 12, 17-25.

37. Hyer, H.; Zhou, L.; Mehta, A.; et al. Composition-dependent solidification cracking of aluminum-silicon alloys during laser powder bed fusion. Acta. Mater. 2021, 208, 116698.

38. Wang, Y.; Li, R.; Yuan, T.; Zou, L.; Wang, M.; Yang, H. Microstructure and mechanical properties of Al-Fe-Sc-Zr alloy additively manufactured by selective laser melting. Mater. Charact. 2021, 180, 111397.

39. Tan, Q.; Yin, Y.; Prasad, A.; et al. Demonstrating the roles of solute and nucleant in grain refinement of additively manufactured aluminium alloys. Addit. Manuf. 2022, 49, 102516.

40. Cao, L.; Lu, R.; Dou, Z.; et al. Understanding the influence of high-strength submicron precipitate on the fracture performance of additively-manufactured aluminum alloy. Int. J. Plasticity. 2025, 188, 104306.

41. Agrawal, P.; Gupta, S.; Thapliyal, S.; Shukla, S.; Haridas, R. S.; Mishra, R. S. Additively manufactured novel Al-Cu-Sc-Zr alloy: microstructure and mechanical properties. Addit. Manuf. 2021, 37, 101623.

42. Thijs, L.; Kempen, K.; Kruth, J.; Van, Humbeeck. J. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta. Mater. 2013, 61, 1809-19.

43. Plotkowski, A.; Rios, O.; Sridharan, N.; et al. Evaluation of an Al-Ce alloy for laser additive manufacturing. Acta. Mater. 2017, 126, 507-19.

44. Wang, Z.; Lin, X.; Kang, N.; Hu, Y.; Chen, J.; Huang, W. Strength-ductility synergy of selective laser melted Al-Mg-Sc-Zr alloy with a heterogeneous grain structure. Addit. Manuf. 2020, 34, 101260.

45. Zhang, H.; Dai, D.; Yuan, L.; Liu, H.; Gu, D. Temperature gradient induced tough-brittle transition behavior of a high-strength Al-4.2Mg-0.4Sc-0.2Zr alloy fabricated by laser powder bed fusion additive manufacturing. Addit. Manuf. 2023, 73, 103655.

46. Hu, Z.; Gao, S.; Mikula, J.; et al. Enhanced plastic stability: achieving high performance in a Al6xxx alloy fabricated by additive manufacturing. Adv. Mater. 2024, 36, e2307825.

47. Li, R.; Wang, M.; Li, Z.; Cao, P.; Yuan, T.; Zhu, H. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms. Acta. Mater. 2020, 193, 83-98.

48. Zhao, J.; Luo, L.; Zheng, X.; et al. The effect of Mn content on a novel Al-Mg-Si-Sc-Zr alloy produced by laser powder bed fusion: the microstructure and mechanical behavior. J. Mater. Res. Technol. 2024, 28, 989-1001.

49. Xiao, F.; Shu, D.; Wang, Y.; et al. Tailoring hierarchical microstructures and nanoprecipitates in additive-manufactured Al-Zn-Mg-Cu-Nb alloys for simultaneously enhancing strength and ductility. Commun. Mater. 2024, 5, 489.

50. Zhu, Z.; Ng, F. L.; Seet, H. L.; et al. Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation. Mater. Today. 2022, 52, 90-101.

51. Li, G.; Zhao, C.; Huang, Y.; et al. Additively manufactured fine-grained ultrahigh-strength bulk aluminum alloys with nanostructured strengthening defects. Mater. Today. 2024, 76, 40-51.

52. Li, Q.; Li, G.; Lin, X.; et al. Development of a high strength Zr/Sc/Hf-modified Al-Mn-Mg alloy using laser powder bed fusion: design of a heterogeneous microstructure incorporating synergistic multiple strengthening mechanisms. Addit. Manuf. 2022, 57, 102967.

53. Tan, Q.; Zhang, J.; Sun, Q.; et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles. Acta. Mater. 2020, 196, 1-16.

54. Zhang, J.; Gao, J.; Song, B.; et al. A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting. Addit. Manuf. 2021, 38, 101829.

55. Xiao, F.; Shu, D.; Wang, D.; Zhu, G.; Wang, S.; Sun, B. Effect of Zn content on the formability and aging precipitation of Al-Zn-Mg-Cu-Nb alloys prepared by LPBF. J. Mater. Res. Technol. 2023, 25, 6338-55.

56. Martin, J. H.; Yahata, B. D.; Hundley, J. M.; Mayer, J. A.; Schaedler, T. A.; Pollock, T. M. 3D printing of high-strength aluminium alloys. Nature 2017, 549, 365-9.

57. Li, G.; Huang, Y.; Li, X.; Guo, C.; Zhu, Q.; Lu, J. Laser powder bed fusion of nano-titania modified 2219 aluminium alloy with superior mechanical properties at both room and elevated temperatures: the significant impact of solute. Addit. Manuf. 2022, 60, 103296.

58. Li, X.; Kang, C.; Huang, H.; Zhang, L.; Sercombe, T. Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass: processing, microstructure evolution and mechanical properties. Mater. Sci. Eng. A. 2014, 606, 370-9.

59. Debroy, T.; Wei, H.; Zuback, J.; et al. Additive manufacturing of metallic components - process, structure and properties. Prog. Mater. Sci. 2018, 92, 112-224.

60. Martin, J. H.; Yahata, B.; Mayer, J.; et al. Grain refinement mechanisms in additively manufactured nano-functionalized aluminum. Acta. Mater. 2020, 200, 1022-37.

61. Liu, X.; Zhao, C.; Zhou, X.; Shen, Z.; Liu, W. Microstructure of selective laser melted AlSi10Mg alloy. Mater. Des. 2019, 168, 107677.

62. Santos Macías, J. G.; Douillard, T.; Zhao, L.; Maire, E.; Pyka, G.; Simar, A. Influence on microstructure, strength and ductility of build platform temperature during laser powder bed fusion of AlSi10Mg. Acta. Mater. 2020, 201, 231-43.

63. Delahaye, J.; Tchuindjang, J. T.; Lecomte-beckers, J.; Rigo, O.; Habraken, A.; Mertens, A. Influence of Si precipitates on fracture mechanisms of AlSi10Mg parts processed by Selective Laser Melting. Acta. Mater. 2019, 175, 160-70.

64. Chen, B.; Moon, S.; Yao, X.; et al. Strength and strain hardening of a selective laser melted AlSi10Mg alloy. Scr. Mater. 2017, 141, 45-9.

65. Wu, J.; Wang, X.; Wang, W.; Attallah, M.; Loretto, M. Microstructure and strength of selectively laser melted AlSi10Mg. Acta. Mater. 2016, 117, 311-20.

66. Uzan, N. E.; Shneck, R.; Yeheskel, O.; Frage, N. High-temperature mechanical properties of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting technologies (AM-SLM). Addit. Manuf. 2018, 24, 257-63.

67. Luo, G.; Chen, H.; Li, Y.; et al. Improved elevated-temperature strength and thermal stability of additive manufactured Al-Ni-Sc-Zr alloys reinforced by cellular structures. Addit. Manuf. 2024, 90, 104313.

68. Pérez-Prado, M.; Martin, A.; Shi, D.; Milenkovic, S.; Cepeda-Jiménez, C. An Al-5Fe-6Cr alloy with outstanding high temperature mechanical behavior by laser powder bed fusion. Addit. Manuf. 2022, 55, 102828.

69. Bahl, S.; Wu, T.; Michi, R. A.; et al. An additively manufactured near-eutectic Al-Ce-Ni-Mn-Zr alloy with high creep resistance. Acta. Mater. 2024, 268, 119787.

70. Zhang, X.; Li, L.; Wen, Z.; et al. Post-heat treatment of laser powder bed fusion fabricated Al-La-Mg-Mn alloy: on intermetallic morphology control and strength-ductility balance. Addit. Manuf. 2023, 78, 103863.

71. Wang, Z.; Lin, X.; Kang, N.; et al. Laser powder bed fusion of high-strength Sc/Zr-modified Al-Mg alloy: phase selection, microstructural/mechanical heterogeneity, and tensile deformation behavior. J. Mater. Sci. Technol. 2021, 95, 40-56.

72. Shang, A.; Stegman, B.; Choy, K.; et al. Additive manufacturing of an ultrastrong, deformable Al alloy with nanoscale intermetallics. Nat. Commun. 2024, 15, 5122.

73. Rakhmonov, J. U.; Weiss, D.; Dunand, D. C. Solidification microstructure, aging evolution and creep resistance of laser powder-bed fused Al-7Ce-8Mg (wt%). Addit. Manuf. 2022, 55, 102862.

74. Wang, J.; Yang, H.; Fu, M. An additively manufactured heat-resistant Al-12Si alloy via introducing stable eutectic engineering. Addit. Manuf. 2024, 95, 104523.

75. Wen, T.; Li, Z.; Wang, J.; et al. From crack-prone to crack-free: eliminating cracks in additively manufacturing of high-strength Mg2Si-modified Al-Mg-Si alloys. J. Mater. Sci. Technol. 2025, 204, 276-91.

76. Hu, H.; Zhao, T.; Ning, Z.; et al. A novel age-hardenable austenitic stainless steel with superb printability. Acta. Mater. 2025, 283, 120547.

77. Li, G.; Brodu, E.; Soete, J.; et al. Exploiting the rapid solidification potential of laser powder bed fusion in high strength and crack-free Al-Cu-Mg-Mn-Zr alloys. Addit. Manuf. 2021, 47, 102210.

78. Sun, T.; Wang, H.; Gao, Z.; et al. The role of in-situ nano-TiB2 particles in improving the printability of noncastable 2024Al alloy. Mater. Res. Lett. 2022, 10, 656-65.

79. Xiao, Y.; Bian, Z.; Wu, Y.; et al. Effect of nano-TiB2 particles on the anisotropy in an AlSi10Mg alloy processed by selective laser melting. J. Alloys. Compd. 2019, 798, 644-55.

80. Ma, S.; Shang, Z.; Shang, A.; et al. Additive manufacturing enabled synergetic strengthening of bimodal reinforcing particles for aluminum matrix composites. Addit. Manuf. 2023, 70, 103543.

81. Li, X.; Ji, G.; Chen, Z.; et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta. Mater. 2017, 129, 183-93.

82. Li, X.; Zhao, K.; Yang, L.; et al. Synergetic effects of trace Sc/Zr/TiB2 on recrystallization and strengthening behavior of Al-Mg alloys. Rare. Met. 2025, 44, 3514-30.

83. Wang, G.; Zhang, Y.; Zou, B.; et al. Enhanced plasticity due to melt pool flow induced uniform dispersion of reinforcing particles in additively manufactured metallic composites. Int. J. Plasticity. 2023, 164, 103591.

84. Luo, Y.; Nothomb, N.; Yu, T.; et al. Effects of microstructure heterogeneity and defects on mechanical behavior of Zr modified AA7075 manufactured by laser powder bed fusion. Addit. Manuf. 2025, 97, 104626.

85. Opprecht, M.; Garandet, J.; Roux, G.; Flament, C.; Soulier, M. A solution to the hot cracking problem for aluminium alloys manufactured by laser beam melting. Acta. Mater. 2020, 197, 40-53.

86. Sun, X.; Zhu, Z.; Chen, M.; et al. Additively manufactured ultrastrong and thermal-resistant Al alloy via engineering the hierarchical intermetallics. Compos. Part. B. Eng. 2025, 291, 111980.

87. Zhu, Z.; Hu, Z.; Ng, F. L.; Seet, H. L.; Nai, S. M. L. Extending the mechanical property regime of laser powder bed fusion Sc- and Zr-modified Al6061 alloy by manipulating process parameters and heat treatment. Addit. Manuf. 2024, 85, 104164.

88. Luo, G.; Chen, H.; Yang, C.; et al. Effect of laser parameters on microstructure and mechanical properties of Al-Ni-Sc-Zr alloys fabricated by laser powder bed fusion. J. Alloys. Compd. 2024, 1008, 176615.

89. Ekubaru, Y.; Gokcekaya, O.; Ishimoto, T.; et al. Excellent strength-ductility balance of Sc-Zr-modified Al-Mg alloy by tuning bimodal microstructure via hatch spacing in laser powder bed fusion. Mater. Des. 2022, 221, 110976.

90. Sun, J.; Kumar, P.; Wang, P.; Ramamurty, U.; Qu, X.; Zhang, B. Effect of columnar-to-equiaxed microstructural transition on the fatigue performance of a laser powder bed fused high-strength Al alloy. J. Mater. Sci. Technol. 2025, 227, 276-88.

91. Bi, J.; Lei, Z.; Chen, Y.; et al. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion. J. Mater. Sci. Technol. 2021, 69, 200-11.

92. Zhou, J.; Han, X.; Li, H.; Liu, S.; Yi, J. Investigation of layer-by-layer laser remelting to improve surface quality, microstructure, and mechanical properties of laser powder bed fused AlSi10Mg alloy. Mater. Des. 2021, 210, 110092.

93. Shi, S.; Zhao, Y.; Yang, H.; et al. Achieving superior strength-plasticity performance in laser powder bed fusion of AlSi10Mg via high-speed scanning remelting. Mater. Res. Lett. 2024, 12, 668-77.

94. Shi, S.; Zhao, Y.; Yang, H.; Lin, X.; Jia, C.; Huang, W. Improving impact toughness of aluminum alloy through scanning strategy during laser powder bed fusion. Mater. Sci. Eng. A. 2025, 932, 148244.

95. Li, C.; Zhang, W.; Yang, H.; Wan, J.; Huang, X.; Chen, Y. Microstructural origin of high strength and high strain hardening capability of a laser powder bed fused AlSi10Mg alloy. J. Mater. Sci. Technol. 2024, 197, 194-206.

96. Zhang, H.; Zhu, H.; Nie, X.; Yin, J.; Hu, Z.; Zeng, X. Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy. Scr. Mater. 2017, 134, 6-10.

97. Qi, Y.; Zhang, H.; Zhang, W.; Hu, Z.; Zhu, H. Heat treatment of Al-Cu-Li-Sc-Zr alloy produced by laser powder bed fusion. Mater. Charact. 2023, 195, 112505.

98. Bayoumy, D.; Schliephake, D.; Dietrich, S.; Wu, X.; Zhu, Y.; Huang, A. Intensive processing optimization for achieving strong and ductile Al-Mn-Mg-Sc-Zr alloy produced by selective laser melting. Mater. Des. 2021, 198, 109317.

99. Jia, Q.; Zhang, F.; Rometsch, P.; et al. Precipitation kinetics, microstructure evolution and mechanical behavior of a developed Al-Mn-Sc alloy fabricated by selective laser melting. Acta. Mater. 2020, 193, 239-51.

100. Xiao, F.; Wang, S.; Wang, Y.; et al. Niobium nanoparticle-enabled grain refinement of a crack-free high strength Al-Zn-Mg-Cu alloy manufactured by selective laser melting. J. Alloys. Compd. 2022, 900, 163427.

101. Zhou, L.; Pan, H.; Hyer, H.; et al. Microstructure and tensile property of a novel AlZnMgScZr alloy additively manufactured by gas atomization and laser powder bed fusion. Scr. Mater. 2019, 158, 24-8.

102. Thapliyal, S.; Shukla, S.; Zhou, L.; et al. Design of heterogeneous structured Al alloys with wide processing window for laser-powder bed fusion additive manufacturing. Addit. Manuf. 2021, 42, 102002.

103. Li, Z.; Li, Z.; Tan, Z.; Xiong, D.; Guo, Q. Stress relaxation and the cellular structure-dependence of plastic deformation in additively manufactured AlSi10Mg alloys. Int. J. Plasticity. 2020, 127, 102640.

104. Wu, Y.; Zhao, C.; Han, Y.; et al. A new SLM-manufactured Al Si alloy with excellent room and elevated-temperature mechanical properties. J. Manuf. Process. 2025, 133, 25-32.

105. Luo, G.; Chen, H.; Hu, L.; et al. Simultaneously enhancing strength and plasticity via direct ageing in additive manufactured Al-Ni-Sc-Zr alloys. Int. J. Plasticity. 2025, 185, 104243.

106. Lv, H.; Peng, P.; Feng, T.; et al. High-performance co-continuous Al-Ce-Mg alloy with in-situ nano-network structure fabricated by laser powder bed fusion. Addit. Manuf. 2022, 60, 103218.

107. Michi, R. A.; Sisco, K.; Bahl, S.; et al. A creep-resistant additively manufactured Al-Ce-Ni-Mn alloy. Acta. Mater. 2022, 227, 117699.

108. Wu, C.; Hu, Y.; Gao, J.; et al. An additively manufactured near-eutectic Al-Ce-Ni-Ti-Zr alloy: microstructure, mechanical properties and heat resistance. Virtual. Phys. Prototyp. 2025, 20, e2518336.

109. Tang, X.; Zhang, H.; Xue, P.; et al. Ultrahigh strength heat-resistant Al-Fe-V-Si-Sc alloy fabricated by laser powder bed fusion. J. Mater. Sci. Technol. 2025, 239, 299-306.

110. Xu, J.; Zhang, C.; Liu, L.; Guo, R.; Sun, M.; Liu, L. Achieving high strength in laser powder-bed fusion processed AlFeCuZr alloy via dual-nanoprecipitations and grain boundary segregation. J. Mater. Sci. Technol. 2023, 137, 56-66.

111. Wang, S.; Lin, X.; Rong, X.; et al. The role of Mg content in regulating microstructures and mechanical properties of Al-Mg-ZnO composites fabricated via in-situ reaction sintering. Compos. Part. B. Eng. 2024, 281, 111565.

112. Hu, Y.; Wu, S.; Guo, Y.; et al. Inhibiting weld cracking in high-strength aluminium alloys. Nat. Commun. 2022, 13, 5816.

113. Rong, X.; Zhao, D.; Chen, X.; et al. Towards the work hardening and strain delocalization achieved via in-situ intragranular reinforcement in Al-CuO composite. Acta. Mater. 2023, 256, 119110.

114. Zhao, Y.; Lin, X.; Rong, X.; et al. Macro- and meso-mechanic investigations on the mechanical properties of heterostructured Al matrix composites featuring intragranular reinforcement. Mater. Res. Lett. 2024, 12, 408-16.

115. Qin, Z.; Kang, N.; El, Mansori. M.; et al. Anisotropic high cycle fatigue property of Sc and Zr-modified Al-Mg alloy fabricated by laser powder bed fusion. Addit. Manuf. 2022, 49, 102514.

116. Plotkowski, A.; Sisco, K.; Bahl, S.; et al. Microstructure and properties of a high temperature Al-Ce-Mn alloy produced by additive manufacturing. Acta. Mater. 2020, 196, 595-608.

117. Gan, K.; Huang, W.; Zhang, W.; et al. Local element segregation-induced cellular structures and dominant dislocation planar slip enable exceptional strength-ductility synergy in an additively-manufactured CoNiV multicomponent alloy with ageing treatment. Int. J. Plasticity. 2024, 182, 104112.

118. Shang, A.; Stegman, B.; Sinclair, D.; et al. Crack mitigation strategies for a high-strength Al alloy Al92Ti2Fe2Co2Ni2 fabricated by additive manufacturing. J. Mater. Res. Technol. 2024, 30, 5497-511.

119. Peng, Z.; Wang, C.; Li, J.; Sun, D.; Meng, F. In-situ synchrotron X-ray diffraction study of the precipitates-matrix interaction in a selective laser melted Al-Mg-Sc-Zr alloy. Scr. Mater. 2025, 260, 116596.

120. Song, L.; Zhao, L.; Ding, L.; et al. Microstructure and loading direction dependent hardening and damage behavior of laser powder bed fusion AlSi10Mg. Mater. Sci. Eng. A. 2022, 832, 142484.

121. Song, L.; Zhao, L.; Ding, L.; et al. How heterogeneous microstructure determines mechanical behavior of laser powder bed fusion AlSi10Mg. Mater. Sci. Eng. A. 2024, 909, 146845.

122. Ben, D.; Ma, Y.; Yang, H.; et al. Heterogeneous microstructure and voids dependence of tensile deformation in a selective laser melted AlSi10Mg alloy. Mater. Sci. Eng. A. 2020, 798, 140109.

123. Li, P.; Kim, Y.; Bobel, A.; et al. Microstructural origin of the anisotropic flow stress of laser powder bed fused AlSi10Mg. Acta. Mater. 2021, 220, 117346.

124. Xia, X.; Li, R.; Wang, Y.; et al. Unveiling the heat-resistant mechanism of an additively manufactured Ag- and Ti-modified Al-Cu-Mg alloy. Rare. Met. 2025, 44, 5811-23.

125. Tang, F.; Han, B.; Hagiwara, M.; Schoenung, J. Tensile properties of a nanostructured Al-5083/SiCp composite at elevated temperatures. Adv. Eng. Mater. 2007, 9, 286-91.

126. Bai, X.; Xie, H.; Zhang, X.; et al. Heat-resistant super-dispersed oxide strengthened aluminium alloys. Nat. Mater. 2024, 23, 747-54.

127. Suryawanshi, J.; Prashanth, K.; Scudino, S.; Eckert, J.; Prakash, O.; Ramamurty, U. Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting. Acta. Mater. 2016, 115, 285-94.

128. Wang, S.; Ning, J.; Zhu, L.; et al. Role of porosity defects in metal 3D printing: Formation mechanisms, impacts on properties and mitigation strategies. Mater. Today. 2022, 59, 133-60.

129. Chen, S.; Gao, H.; Zhang, Y.; Wu, Q.; Gao, Z.; Zhou, X. Review on residual stresses in metal additive manufacturing: formation mechanisms, parameter dependencies, prediction and control approaches. J. Mater. Res. Technol. 2022, 17, 2950-74.

130. du Plessis, A.; Beretta, S. Killer notches: the effect of as-built surface roughness on fatigue failure in AlSi10Mg produced by laser powder bed fusion. Addit. Manuf. 2020, 35, 101424.

131. Sanaei, N.; Fatemi, A. Defects in additive manufactured metals and their effect on fatigue performance: a state-of-the-art review. Prog. Mater. Sci. 2021, 117, 100724.

132. Brandl, E.; Heckenberger, U.; Holzinger, V.; Buchbinder, D. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater. Des. 2012, 34, 159-69.

133. Beevers, E.; Brandão, A. D.; Gumpinger, J.; et al. Fatigue properties and material characteristics of additively manufactured AlSi10Mg - Effect of the contour parameter on the microstructure, density, residual stress, roughness and mechanical properties. Int. J. Fatigue. 2018, 117, 148-62.

134. Uzan, N. E.; Ramati, S.; Shneck, R.; Frage, N.; Yeheskel, O. On the effect of shot-peening on fatigue resistance of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting (AM-SLM). Addit. Manuf. 2018, 21, 458-64.

135. Qu, Z.; Zhang, Z.; Liu, R.; et al. High fatigue resistance in a titanium alloy via near-void-free 3D printing. Nature 2024, 626, 999-1004.

136. Uzan, N. E.; Shneck, R.; Yeheskel, O.; Frage, N. Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM). Mater. Sci. Eng. A. 2017, 704, 229-37.

137. Zhang, C.; Zhu, H.; Liao, H.; Cheng, Y.; Hu, Z.; Zeng, X. Effect of heat treatments on fatigue property of selective laser melting AlSi10Mg. Int. J. Fatigue. 2018, 116, 513-22.

138. Wu, Z.; Wu, S.; Bao, J.; et al. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion. Int. J. Fatigue. 2021, 151, 106317.

139. Wu, Z.; Wu, S.; Kruzic, J. J.; et al. Critical damage events of 3D printed AlSi10Mg alloy via in situ synchrotron X-ray tomography. Acta. Mater. 2025, 282, 120464.

140. Becker, T. H.; Kumar, P.; Ramamurty, U. Fracture and fatigue in additively manufactured metals. Acta. Mater. 2021, 219, 117240.

141. Paul, M. J.; Liu, Q.; Li, X.; Kruzic, J. J.; Ramamurty, U.; Gludovatz, B. Impact of micro and mesostructure on the fatigue crack growth in laser powder bed fusion fabricated AlSi10Mg. Acta. Mater. 2025, 293, 121070.

142. Paul, M. J.; Liu, Q.; Best, J. P.; et al. Fracture resistance of AlSi10Mg fabricated by laser powder bed fusion. Acta. Mater. 2021, 211, 116869.

143. Schimbäck, D.; Kaserer, L.; Mair, P.; et al. Deformation and fatigue behaviour of additively manufactured Scalmalloy® with bimodal microstructure. Int. J. Fatigue. 2023, 172, 107592.

144. Dan, C.; Cui, Y.; Wu, Y.; et al. Achieving ultrahigh fatigue resistance in AlSi10Mg alloy by additive manufacturing. Nat. Mater. 2023, 22, 1182-8.

145. Glerum, J. A.; Mogonye, J.; Dunand, D. C. Creep properties and microstructure evolution at 260-300 °C of AlSi10Mg manufactured via laser powder-bed fusion. Mater. Sci. Eng. A. 2022, 843, 143075.

146. Jia, Q.; Zhuo, Y.; Yan, Y.; et al. Tensile creep mechanisms of Al-Mn-Sc alloy fabricated by additive manufacturing. Addit. Manuf. 2024, 79, 103910.

147. Griffiths, S.; Croteau, J.; Rossell, M.; et al. Coarsening- and creep resistance of precipitation-strengthened Al-Mg-Zr alloys processed by selective laser melting. Acta. Mater. 2020, 188, 192-202.

148. Zhang, H.; Qin, Y.; Peng, J.; Zhang, W.; Li, J.; Zha, M. Impressive creep resistance in an additively manufactured Al-Mg alloy enabled by multiscale microstructure tuning. Scr. Mater. 2025, 265, 116753.

149. Glerum, J. A.; Mogonye, J.; Dunand, D. C. Modeling and measurements of creep deformation in laser-melted Al-Ti-Zr alloys with bimodal grain size. Acta. Mater. 2024, 263, 119493.

150. Rakhmonov, J. U.; Vo, N. Q.; Croteau, J. R.; Dorn, J.; Dunand, D. C. Laser-melted Al-3.6Mn-2.0Fe-1.8Si-0.9Zr (wt%) alloy with outstanding creep resistance via formation of α-Al(FeMn)Si precipitates. Addit. Manuf. 2022, 60, 103285.

151. Fan, X.; Fleming, T. G.; Clark, S. J.; et al. Magnetic modulation of keyhole instability during laser welding and additive manufacturing. Science 2025, 387, 864-9.

152. Du, D.; Wang, L.; Dong, A.; Yan, W.; Zhu, G.; Sun, B. Promoting the densification and grain refinement with assistance of static magnetic field in laser powder bed fusion. Int. J. Mach. Tools. Manuf. 2022, 183, 103965.

153. Karna, S.; Yuan, L.; Zhang, T.; et al. On the microstructure evolution of AA6061 with pulsed laser powder bed fusion. Mater. Res. Lett. 2025, 13, 439-47.

154. Gao, S.; Ji, W.; Zhu, Q.; et al. Pulsed-wave laser additive manufacturing of CrCoNi medium-entropy alloys with high strength and ductility. Mater. Today. 2024, 81, 36-46.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/