REFERENCES

1. Kardjilov, N.; Manke, I.; Woracek, R.; Hilger, A.; Banhart, J. Advances in neutron imaging. Mater. Today. 2018, 21, 652-72.

2. Kardjilov, N.; Manke, I.; Hilger, A.; Strobl, M.; Banhart, J. Neutron imaging in materials science. Mater. Today. 2011, 14, 248-56.

3. Buitrago, N.; Santisteban, J.; Tartaglione, A.; et al. Determination of very low concentrations of hydrogen in zirconium alloys by neutron imaging. J. Nucl. Mater. 2018, 503, 98-109.

4. Strickland, J.; Tassenberg, K.; Sheppard, G.; et al. 2d single crystal bragg-dip mapping by time-of-flight energy-resolved neutron imaging on IMAT@ISIS. Sci. Rep. 2020, 10, 20751.

5. Woracek, R.; Santisteban, J.; Fedrigo, A.; Strobl, M. Diffraction in neutron imaging - A review. Nucl. Instrum. Methods. Phys. Res. Sect. A. 2018, 878, 141-58.

6. Muneem, A.; Yoshida, J.; Saito, T. R.; et al. Advancing neutron imaging techniques to highest resolution with fluorescent nuclear track detectors. Sci. Rep. 2025, 15, 2103.

7. Weick, S.; Grosse, M. Investigating hydrogen in zirconium alloys by means of neutron imaging. Materials 2024, 17, 781.

8. Aswal, D. K.; Sarkar, P. S.; Kashyap, Y. S. Neutron imaging: basics, techniques and applications. Springer, 2022.

9. Strobl, M.; Manke, I.; Kardjilov, N.; Hilger, A.; Dawson, M.; Banhart, J. Advances in neutron radiography and tomography. J. Phys. D. Appl. Phys. 2009, 42, 243001.

10. Grosse, M.; Kardjilov, N. Which resolution can be achieved in practice in neutron imaging experiments? Phys. Proc. 2017, 88, 266-74.

11. Brenizer, J. A review of significant advances in neutron imaging from conception to the present. Phys. Proc. 2013, 43, 10-20.

12. Wang, S.; Shi, H.; Wang, D.; et al. Neutron-based characterization: a rising star in illuminating rechargeable lithium metal batteries. Nano. Energy. 2024, 122, 109337.

13. Börries, S. Neutron imaging of metal hydride systems; 2017. Available from: https://ediss.sub.uni-hamburg.de/handle/ediss/7425 [Last accessed on 18 Sep 2025].

14. Lehmann, E. H.; Vontobel, P.; Kardjilov, N. Hydrogen distribution measurements by neutrons. Appl. Radiat. Isot. 2004, 61, 503-9.

15. Bilheux, H. Z.; McGreevy, R.; Anderson, I. S. Neutron imaging and applications: a reference for the imaging community; Springer, 2009.

16. Banhart, J. Advanced tomographic methods in materials research and engineering. OUP Oxford; 2008.

17. Mattes, M.; Keinert, J. Thermal neutron scattering data for the moderator materials h2o, d2o and ZrHx in ENDF-6 format and as ACE library for MCNP(X) codes. Vienna: IAEA Nuclear Data Section; 2005. Available from: https://library.iaea.org/permalink/43IAEA_INST/2q130i/alma991000004629709096 [Last accessed on 18 Sep 2025].

18. Grammer, K. B.; Alarcon, R.; Barrón-palos, L.; et al. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission. Phys. Rev. B. 2015, 91, 180301.

19. Romanelli, G.; Onorati, D.; Ulpiani, P.; et al. Thermal neutron cross sections of amino acids from average contributions of functional groups. J. Phys. Condens. Matter. 2021, 33, 285901.

20. Sears, V. F. Neutron scattering lengths and cross sections. Neutron. News. 1992, 3, 26-37.

21. Fritzsche, H.; Huot, J.; Fruchart, D. Neutron scattering and other nuclear techniques for hydrogen in materials. Springer, 2016.

22. Dawidowski, J.; Granada, J. R.; Santisteban, J. R.; et al. Neutron scattering lengths and cross sections. Neutron Scattering - Fundamentals. Elsevier; 2013. pp. 471-528.

23. Grosse, M.; Kuehne, G.; Steinbrueck, M.; Lehmann, E.; Stuckert, J.; Vontobel, P. Quantification of hydrogen uptake of steam-oxidized zirconium alloys by means of neutron radiography. J. Phys. Condens. Matter. 2008, 20, 104263.

24. Grosse, M.; Stuckert, J.; Steinbrück, M.; Kaestner, A. Secondary hydriding during LOCA - Results from the QUENCH-L0 test. J. Nucl. Mater. 2012, 420, 575-82.

25. Gong, W.; Trtik, P.; Colldeweih, A.; et al. Hydrogen diffusion and precipitation in duplex zirconium nuclear fuel cladding quantified by high-resolution neutron imaging. J. Nucl. Mater. 2019, 526, 151757.

26. Colldeweih, A. W.; Fagnoni, F.; Trtik, P.; Zubler, R.; Pouchon, M. A.; Bertsch, J. Delayed hydride cracking in Zircaloy-2 with and without liner at various temperatures investigated by high-resolution neutron radiography. J. Nucl. Mater. 2022, 561, 153549.

27. Gómez, A. G.; Ponce, J. P.; Grosse, M.; et al. Evaluation of the delayed hydrogen cracking behavior and the hydrogen diffusion coefficient for different microstructures of the Zr-2.5%Nb alloy. J. Nucl. Mater. 2023, 587, 154725.

28. Fagnoni, F.; Trtik, P.; Wheeler, J. M.; Zubler, R.; Bertsch, J.; Duarte, L. I. Hydrogen diffusion in zirconium cladding alloys with an inner liner as quantified by neutron radiography and nanoindentation. J. Nucl. Mater. 2023, 584, 154574.

29. Lin, J.; Zhong, W.; Bilheux, H. Z.; Heuser, B. J. Azimuthally anisotropic hydride lens structures in Zircaloy 4 nuclear fuel cladding: high-resolution neutron radiography imaging and BISON finite element analysis. J. Nucl. Mater. 2017, 496, 129-39.

30. Grosse, M.; van, den. Berg. M.; Goulet, C.; Lehmann, E.; Schillinger, B. In-situ neutron radiography investigations of hydrogen diffusion and absorption in zirconium alloys. Nucl. Instrum. Methods. Phys. Res. Sect. A. 2011, 651, 253-7.

31. Shukla, S.; Singh, P.; Roy, T.; Kashyap, Y.; Shukla, M.; Singh, R. Investigation of hydrogen diffusivity in Zr-2.5%Nb alloy pressure tube material using metallography and neutron radiography. J. Nucl. Mater. 2021, 544, 152679.

32. Shukla, S.; Singh, R.; Kashyap, Y.; et al. Anisotropy study of hydrogen diffusion along different directions of Zr-2.5%Nb alloy pressure tube using neutron imaging. J. Nucl. Mater. 2023, 580, 154414.

33. Bennun, L.; Santisteban, J.; Díaz-Valdés, J.; Granada, J.; Mayer, R. A neutronic method to determine low hydrogen concentrations in metals. Nucl. Instrum. Methods. Phys. Res. Sect. B. 2007, 263, 468-72.

34. Granada, J.; Santisteban, J.; Mayer, R. Non-destructive determination of very low hydrogen content in metals with the use of neutron techniques. Phys. B. 1995, 213-214, 1005-7.

35. Santisteban, J.; Granada, J.; Mayer, R. Neutron spectrometer for the determination of very low hydrogen content in metals. J. Neutron. Res. 1998, 7, 1-14.

36. Sváb, E.; Mészáros, G.; Somogyvári, Z.; Balaskó, M.; Körösi, F. Neutron imaging of Zr-1%Nb fuel cladding material containing hydrogen. Appl. Radiat. Isot. 2004, 61, 471-7.

37. Grosse, M. K.; Stuckert, J.; Steinbrück, M.; Kaestner, A. P.; Hartmann, S. Neutron radiography and tomography investigations of the secondary hydriding of zircaloy-4 during simulated loss of coolant nuclear accidents. Phys. Proc. 2013, 43, 294-306.

38. Grosse, M.; Valance, S.; Stuckert, J.; et al. Neutron imaging investigations of the hydrogen related degradation of the mechanical properties of zircaloy-4 cladding tubes. MRS. Proc. 2013, 1528, S1946427413003643.

39. Grosse, M.; van, den. Berg. M.; Goulet, C.; Kaestner, A. In-situ investigation of hydrogen diffusion in Zircaloy-4 by means of neutron radiography. J. Phys. Conf. Ser. 2012, 340, 012106.

40. Grosse, M.; Pulvermacher, S.; Steinbrück, M.; Schillinger, B. In-situ neutron radiography investigations of the reaction of Zircaloy-4 in steam, nitrogen/steam and air/steam atmospheres. Phys. B. 2018, 551, 244-8.

41. Grosse, M.; Roessger, C.; Stuckert, J.; et al. Neutron imaging investigations of the secondary hydriding of nuclear fuel cladding alloys during loss of coolant accidents. Phys. Proc. 2015, 69, 436-44.

42. Hong T, Brachet J, Crépin J, Le Saux M. Combined effects of temperature and of high hydrogen and oxygen contents on the mechanical behavior of a zirconium alloy upon cooling from the βZr phase temperature range. J. Nucl. Mater. 2021, 554, 153069.

43. Agrawal, A.; Kashyap, Y.; Sarkar, P.; et al. Study of hydride blisters in Zr-alloy using neutron tomography. J. Nucl. Mater. 2012, 421, 47-53.

44. Smith, T.; Bilheux, H.; Ray, H.; Bilheux, J.; Yan, Y. High resolution neutron radiography and tomography of hydrided zircaloy-4 cladding materials. Phys. Proc. 2015, 69, 478-82.

45. Brachet, J.; Hamon, D.; Le, Saux. M.; et al. “Study of secondary hydriding at high temperature in zirconium based nuclear fuel cladding tubes by coupling information from neutron radiography/tomography, electron probe micro analysis, micro elastic recoil detection analysis and laser induced breakdown spectroscopy microprobe. J. Nucl. Mater. 2017, 488, 267-86.

46. Gong, W.; Trtik, P.; Valance, S.; Bertsch, J. Hydrogen diffusion under stress in Zircaloy: high-resolution neutron radiography and finite element modeling. J. Nucl. Mater. 2018, 508, 459-64.

47. Gong, W.; Trtik, P.; Ma, F.; Jia, Y.; Li, J.; Bertsch, J. Hydrogen diffusion and precipitation under non-uniform stress in duplex zirconium nuclear fuel cladding investigated by high-resolution neutron imaging. J. Nucl. Mater. 2022, 570, 153971.

48. Stella, V.; Soria, S.; Gomez, A.; Grosse, M.; Schulz, M.; Santisteban, J. R. Hydrogen diffusion in Zr-2.5Nb pressure tubes specimens between 300°C-400°C by in-situ neutron imaging experiments. J. Phys. Conf. Ser. 2023, 2605, 012037.

49. Duarte, L. I.; Fagnoni, F.; Zubler, R.; Gong, W.; Trtik, P.; Bertsch, J. Effect of the inner liner on the hydrogen distribution of zircaloy-2 nuclear fuel claddings. J. Nucl. Mater. 2021, 557, 153284.

50. Konarski, P.; Cozzo, C.; Khvostov, G.; Ferroukhi, H. Modeling of hydrogen behavior in liner claddings. J. Nucl. Mater. 2023, 573, 154125.

51. Fagnoni, F.; Kursun, E.; Busi, M.; et al. Hydrogen enhanced localized plasticity in zirconium as observed by digital image correlation. J. Nucl. Mater. 2024, 590, 154873.

52. Crha, J.; Vila-Comamala, J.; Lehmann, E.; David, C.; Trtik, P. Light yield enhancement of 157-gadolinium oxysulfide scintillator screens for the high-resolution neutron imaging. MethodsX 2019, 6, 107-14.

53. Trtik, P.; Lehmann, E. H. Progress in high-resolution neutron imaging at the paul scherrer institut - the neutron microscope project. J. Phys. Conf. Ser. 2016, 746, 012004.

54. Gustschin, A.; Han, Y.; Losko, A.; et al. Event-based high-resolution neutron image formation analysis using intensified CMOS cameras. Sci. Rep. 2024, 14, 26941.

55. Grosse, M.; Santisteban, J. R.; Bertsch, J.; et al. Investigations of the hydrogen diffusion and distribution in Zirconium by means of Neutron Imaging. Kerntechnik 2018, 83, 495-501.

56. Grosse, M.; Schillinger, B.; Kaestner, A. In situ neutron radiography investigations of hydrogen related processes in zirconium alloys. Appl. Sci. 2021, 11, 5775.

57. Soria, S.; Gomez, A.; Grosse, M.; Schulz, M.; Santisteban, J.; Vizcaino, P. Development of in-situ delayed hydride cracking tests using neutron imaging to study the H redistribution in Zr-2.5%Nb. J. Phys. Conf. Ser. 2023, 2605, 012036.

58. Xue, Z. L.; Ramirez-Cuesta, A. J.; Brown, C. M.; et al. Neutron instruments for research in coordination chemistry. Eur. J. Inorg. Chem. 2024, 2019, 1065-89.

59. Weick, S.; Grosse, M.; Steinbrueck, M. The INCHAMEL facility - a new device for in-situ neutron investigations under defined temperatures with applicable mechanical load. J. Phys. Conf. Ser. 2023, 2605, 012035.

60. Taylor, C. N. Hydrogen and its detection in fusion and fission nuclear materials - a review. J. Nucl. Mater. 2022, 558, 153396.

61. Leyens, C.; Peters, M. Titanium and titanium alloys: fundamentals and applications. 2003.

62. Niinomi, M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2008, 1, 30-42.

63. Zhang, X.; Chen, Z.; Luo, H.; Zhou, T.; Zhao, Y.; Ling, Z. Corrosion resistances of metallic materials in environments containing chloride ions: a review. Trans. Nonferrous. Met. Soc. China. 2022, 32, 377-410.

64. Oryshchenko, A. S.; Kudryavtsev, A. S.; Mikhailov, V. I.; Leonov, V. P. Titanium alloys for shipbuilding and nuclear power engineering. Inorg. Mater. Appl. Res. 2012, 3, 497-506.

65. Wang, C.; Zhang, L.; Ma, Y.; Zhang, S.; Yang, R.; Hu, Q. Hydrogen-surface interaction from first-principles calculations and its implication to hydrogen embrittlement mechanisms of titanium. Appl. Surf. Sci. 2023, 621, 156871.

66. Yan, H.; Kim, J.; Cem, Tasan. C. In-situ scanning electron microscope thermal desorption spectroscopy (SEM-TDS) analysis of thermally-induced titanium hydride decomposition and reformation. Acta. Mater. 2022, 226, 117562.

67. Tsuchiya, B.; Teshigawara, M.; Nagata, S.; et al. Hydrogen analyses of titanium hydride by ERD and NRG methods. Nucl. Instrum. Methods. Phys. Res. Sect. B. 2002, 190, 699-703.

68. Wang, Q.; Hu, J.; Weng, H.; et al. Hydrogen diffusion-induced crystallographic changes in α + β titanium alloy. Scr. Mater. 2025, 256, 116410.

69. Yang, L.; He, L.; Huang, D.; et al. Three-dimensional hydrogen distribution and quantitative determination of titanium alloys via neutron tomography. Analyst 2020, 145, 4156-63.

70. Kumar, R.; Solís, C.; Trtik, P.; et al. Characterizing effects of hydrogen ingress in Ti-Mg based hybrid implant materials. RSC. Adv. 2025, 15, 4472-80.

71. Zakalek, P.; Gutberlet, T.; Brückel, T. Neutron sources for large scale user facilities: the potential of high current accelerator-driven neutron sources. Prog. Part. Nucl. Phys. 2025, 142, 104163.

72. Lindblom, D.; Halilović, A. E.; Woracek, R.; Tengattini, A.; Helfen, L.; Dahlberg, C. F. In-situ neutron imaging of delayed crack propagation of high strength martensitic steel under hydrogen embrittlement conditions. Mater. Sci. Eng. A. 2024, 895, 146215.

73. Griesche, A.; Dabah, E.; Kannengiesser, T.; Kardjilov, N.; Hilger, A.; Manke, I. Three-dimensional imaging of hydrogen blister in iron with neutron tomography. Acta. Mater. 2014, 78, 14-22.

74. Chen, Y.; Huang, C.; Liu, P.; et al. Hydrogen trapping and embrittlement in metals - A review. Int. J. Hydrogen. Energy. 2025, 136, 789-821.

75. Beyer, K.; Kannengiesser, T.; Griesche, A.; Schillinger, B. Study of hydrogen effusion in austenitic stainless steel by time-resolved in-situ measurements using neutron radiography. Nucl. Instrum. Methods. Phys. Res. Sect. A. 2011, 651, 211-5.

76. Griesche, A.; Solórzano, E.; Beyer, K.; Kannengiesser, T. The advantage of using in-situ methods for studying hydrogen mass transport: Neutron radiography vs. carrier gas hot extraction. Int. J. Hydrogen. Energy. 2013, 38, 14725-9.

77. Griesche, A.; Dabah, E.; Kardjilov, N.; Hilger, A.; Manke, I.; Kannengiesser, T. Imaging of hydrogen in steels using neutrons. Int. J. Mater. Res. 2014, 105, 640-4.

78. Griesche, A.; Dabah, E.; Kannengiesser, T. Neutron imaging of hydrogen in iron and steel. Can. Metall. Quart. 2015, 54, 38-42.

79. Griesche, A.; Dabah, E.; Kannengiesser, T.; et al. Measuring hydrogen distributions in iron and steel using neutrons. Phys. Proc. 2015, 69, 445-50.

80. Jia, Y.; Han, B.; Wang, J.; et al. Inducing one-step dehydrogenation of magnesium borohydride via confinement in robust dodecahedral nitrogen-doped porous carbon scaffold. Adv. Mater. 2024, 36, e2406152.

81. Bellosta, von. Colbe. J. M.; Metz, O.; Lozano, G. A.; et al. Behavior of scaled-up sodium alanate hydrogen storage tanks during sorption. Int. J. Hydrogen. Energy. 2012, 37, 2807-11.

82. Sakaguchi, H.; Satake, Y.; Hatakeyama, K.; et al. Analysis of hydrogen distribution in hydrogen storage alloy using neutron radiography. J. Alloys. Compd. 2003, 354, 208-15.

83. Sakaguchi, H.; Kohzai, A.; Hatakeyama, K.; et al. Visualization of hydrogen in hydrogen storage alloys using neutron radiography. Int. J. Hydrogen. Energy. 2000, 25, 1205-8.

84. Biasetti, A.; Marín, J.; Meyer, G.; Borzone, E. M.; Aversente, N.; Baruj, A. Decrepitation process of a hydride forming material observed by neutron radiography. J. Phys. Conf. Ser. 2023, 2605, 012033.

85. Gondek, Ł.; Selvaraj, N.; Czub, J.; et al. Imaging of an operating LaNi4.8Al0.2-based hydrogen storage container. Int. J. Hydrogen. Energy. 2011, 36, 9751-7.

86. Jacobson, D.; Hussey, D.; Baltic, E.; Udovic, T.; Rush, J.; Bowman, Jr. R. Neutron imaging studies of metal-hydride storage beds. Int. J. Hydrogen. Energy. 2010, 35, 12837-45.

87. Garlea, E.; King, M.; Galloway, E.; et al. Identification of lithium hydride and its hydrolysis products with neutron imaging. J. Nucl. Mater. 2017, 485, 147-53.

88. Herbrig, K.; Pohlmann, C.; Gondek, Ł.; et al. Investigations of the structural stability of metal hydride composites by in-situ neutron imaging. J. Power. Sources. 2015, 293, 109-18.

89. Börries, S.; Metz, O.; Pranzas, P.; et al. Scattering influences in quantitative fission neutron radiography for the in situ analysis of hydrogen distribution in metal hydrides. Nucl. Instrum. Methods. Phys. Res. Sect. A. 2015, 797, 158-64.

90. Karimi, F.; Börries, S.; Pranzas, P. K.; et al. Characterization of LiBH4 - MgH2 reactive hydride composite system with scattering and imaging methods using neutron and synchrotron radiation. Adv. Eng. Mater. 2021, 23, 2100294.

91. Pranzas, P. K.; Bösenberg, U.; Karimi, F.; et al. Characterization of hydrogen storage materials and systems with photons and neutrons. Adv. Eng. Mater. 2011, 13, 730-6.

92. Baruj, A.; Ardito, M.; Marín, J.; Sánchez, F.; Borzone, E.; Meyer, G. Design and characterization of a hydride-based hydrogen storage container for neutron imaging studies. Phys. Proc. 2015, 69, 491-5.

93. Börries, S.; Metz, O.; Pranzas, P.; et al. Optimization and comprehensive characterization of metal hydride based hydrogen storage systems using in-situ Neutron Radiography. J. Power. Sources. 2016, 328, 567-77.

94. Baruj, A.; Borzone, E.; Ardito, M.; et al. Neutron radiography analysis of a hydride-based hydrogen storage system. Int. J. Hydrogen. Energy. 2015, 40, 16913-20.

95. Pohlmann, C.; Herbrig, K.; Gondek, Ł.; et al. In operando visualization of hydride-graphite composites during cyclic hydrogenation by high-resolution neutron imaging. J. Power. Sources. 2015, 277, 360-9.

96. Heubner, F.; Hilger, A.; Kardjilov, N.; et al. In-operando stress measurement and neutron imaging of metal hydride composites for solid-state hydrogen storage. J. Power. Sources. 2018, 397, 262-70.

97. Hassanein, R.; de, Beer. F.; Kardjilov, N.; Lehmann, E. Scattering correction algorithm for neutron radiography and tomography tested at facilities with different beam characteristics. Phys. B. 2006, 385-386, 1194-6.

98. Boillat, P.; Carminati, C.; Schmid, F.; et al. Chasing quantitative biases in neutron imaging with scintillator-camera detectors: a practical method with black body grids. Opt. Express. 2018, 26, 15769-84.

99. Yetik, O.; Trtik, P.; Zubler, R.; Grabherr, R. M.; Bertsch, J.; Duarte, L. I. Hydrogen redistribution in non-irradiated and irradiated duplex zirconium claddings by high-resolution neutron imaging. J. Nucl. Mater. 2025, 610, 155780.

100. Carminati, C.; Strobl, M.; Kaestner, A. KipTool, a general purpose processing tool for neutron imaging data. SoftwareX 2019, 10, 100279.

101. Walker, S. M.; Schwyn, D. A.; Mokso, R.; et al. In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor. PLoS. Biol. 2014, 12, e1001823.

102. Guo, S.; Li, W.; Wang, P.; et al. Flux measurement of synchrotron radiation monochromatic X-ray in (6-70) keV. Nucl. Instrum. Methods. Phys. Res. Sect. A. 2025, 1077, 170553.

103. Amgarou, K.; Herranz, M. State-of-the-art and challenges of non-destructive techniques for in-situ radiological characterization of nuclear facilities to be dismantled. Nucl. Eng. Technol. 2021, 53, 3491-504.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/