REFERENCES

1. Zhu, Y.; Wu, X. Heterostructured materials. Prog. Mater. Sci. 2023, 131, 101019.

2. Zhu, Y.; Ameyama, K.; Anderson, P. M.; et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater. Res. Lett. 2021, 9, 1-31.

3. Zhu, Y.; Wu, X. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater. Res. Lett. 2019, 7, 393-8.

4. Lee, T.; Jeong, W.; Chung, S.; Ryu, H. J. Effects of TiC on the microstructure refinement and mechanical property enhancement of additive manufactured Inconel 625/TiC metal matrix composites fabricated with novel core-shell composite powder. J. Mater. Sci. Technol. 2023, 164, 13-26.

5. Lv, Y.; Liu, Y.; Zhang, Q.; et al. Hot corrosion behavior of a novel TiC/GTD222 nickel-based composite prepared by selective laser melting. Mater. Charact. 2023, 205, 113245.

6. Zhao, M.; Song, J.; Tang, Q.; et al. Laser powder bed fusion of Inconel 718-based composites: effect of TiB2 content on microstructure and mechanical performance. Opt. Laser. Technol. 2023, 167, 109596.

7. Tekoglu, E.; Bae, J. S.; Kim, H. A.; et al. Superior high-temperature mechanical properties and microstructural features of LPBF-printed In625-based metal matrix composites. Mater. Today. 2024, 80, 297-307.

8. Luu, D. N.; Zhou, W.; Nai, S. M. L. Influence of nano-Y2O3 addition on the mechanical properties of selective laser melted Inconel 718. Mater. Sci. Eng. A. 2022, 845, 143233.

9. Hu, Z.; Guan, K.; Qian, Z.; Dong, J.; Wu, J.; Ma, Z. Simultaneous enhancement of strength and ductility in selective laser melting manufactured 316L alloy by employing Y2O3 coated spherical powder as precursor. J. Alloys. Compd. 2022, 899, 163262.

10. Liu, L.; Li, S.; Pan, D.; et al. Loss-free tensile ductility of dual-structure titanium composites via an interdiffusion and self-organization strategy. Proc. Natl. Acad. Sci. USA. 2023, 120, e2302234120.

11. Sui, S.; Qi, J.; Ma, D.; et al. Additive manufacturing of ultrastrong and ductile nickel matrix composites via hetero-deformation induced strengthening. Int. J. Extrem. Manuf. 2025, 7, 045003.

12. Pandey, V.; Seetharam, R.; Chelladurai, H. A comprehensive review: discussed the effect of high-entropy alloys as reinforcement on metal matrix composite properties, fabrication techniques, and applications. J. Alloys. Compd. 2024, 1002, 175095.

13. Kumar, D.; Seetharam, R.; Ponappa, K. A review on microstructures, mechanical properties and processing of high entropy alloys reinforced composite materials. J. Alloys. Compd. 2024, 972, 172732.

14. Kareem, S. A.; Anaele, J. U.; Aikulola, E. O.; Adewole, T. A.; Bodunrin, M. O.; Alaneme, K. K. Design and selection of metal matrix composites reinforced with high entropy alloys - functionality appraisal and applicability in service: a critical review. J. Alloys. Metall. Syst. 2024, 5, 100057.

15. Yang, X.; Zhang, H.; Dong, P.; Yan, Z.; Wang, W. A study on the formation of multiple intermetallic compounds of friction stir processed high entropy alloy particles reinforced Al matrix composites. Mater. Charact. 2022, 183, 111646.

16. Wan, B.; Lu, T.; Xu, X.; Jin, S.; Li, W.; Zhang, L. Achieving high strength and ductility in high-entropy alloy particle reinforced Al matrix composites with proper proportion of layered structures. Mater. Charact. 2023, 205, 113354.

17. Kumar, A.; Singh, A.; Suhane, A.; Singh, A. K.; Verma, P. K. Artificial age hardening behavior of a squeeze cast CoCrFeMnNi high entropy alloy reinforced 6082-aluminium matrix composite. Mater. Charact. 2023, 206, 113401.

18. Luo, K.; Wu, Y.; Xiong, H.; Zhang, Y.; Kong, C.; Yu, H. Enhanced mechanical properties of aluminum matrix composites reinforced with high-entropy alloy particles via asymmetric cryorolling. Trans. Nonferrous. Met. Soc. China. 2023, 33, 1988-2000.

19. Ravi, L.; Vanaraj, P. W.; Subathra, B.; Perumal, S.; Kumar, S.; kirana, R. Enhancing mechanical, and tribological properties of aluminum metal matrix composite reinforced with high entropy alloy using friction stir processing. Mater. Chem. Phys. 2025, 338, 130614.

20. Li, P.; Peng, K.; Wu, B.; Huang, H.; Zhang, Y.; Gao, M. Mechanical properties of Al-Si matrix composites synergistically reinforced by high-entropy alloy and SiC nanoparticles. J. Alloys. Compd. 2023, 939, 168762.

21. Li, G.; Wei, Y.; Wang, H.; et al. Microstructure and properties of FeCoNi1.5CrCup/Al high-entropy alloy strengthened aluminum matrix composites and finite element simulation. Mater. Today. Commun. 2023, 35, 106022.

22. Li, P.; Tong, Y.; Wang, X.; Sato, Y. S.; Dong, H. Microstructures and mechanical properties of AlCoCrFeNi2.1/6061-T6 aluminum-matrix composites prepared by friction stir processing. Mater. Sci. Eng. A. 2023, 863, 144544.

23. Karthik, G.; Panikar, S.; Ram, G. J.; Kottada, R. S. Additive manufacturing of an aluminum matrix composite reinforced with nanocrystalline high-entropy alloy particles. Mater. Sci. Eng. A. 2017, 679, 193-203.

24. Zhu, R.; Sun, Y.; Feng, J.; Gong, W.; Li, Y. Effect of microstructure on mechanical properties of FeCoNiCrAl high entropy alloys particle reinforced Cu matrix surface composite prepared by FSP. J. Mater. Res. Technol. 2023, 27, 2695-708.

25. Chen, J.; Xiang, T.; Bao, W.; et al. Novel strength-electrical conductivity synergy in Cu-based composites reinforced with TiZrNbTa high entropy alloy. Mater. Sci. Eng. A. 2023, 878, 145210.

26. Chiu, C.; Chang, H. H. Al0.5CoCrFeNi2 high entropy alloy particle reinforced AZ91 magnesium alloy-based composite processed by spark plasma sintering. Materials 2021, 14, 6520.

27. Ezatpour, H. R.; Jalalabadi, M.; Huo, Y.; Sazegaran, H. CoCrFeNiMoTi high-entropy alloy reinforced Mg matrix composites produced by multi-pass friction stir processing: focus on pin geometry, microstructure and mechanical properties. Trans. Indian. Inst. Met. 2024, 77, 3303-10.

28. Kumar, D.; Seetharam, R.; Ponappa, K. Investigation of microstructural and mechanical properties of Mg-HEA nanocomposite through ultrasonic assisted two step stir casting technique. In Proceedings of the International Conference on Sustainable Energy Technologies. Singapore; 2024; pp. 415-22.

29. Huang, Y.; Zhang, F.; Pan, X.; et al. Fabrication and evaluation of high-entropy alloy reinforced Fe bond diamond tool. J. Mater. Proc. Technol. 2024, 328, 118419.

30. Zhang, C.; Zhu, J.; Ji, C.; et al. Laser powder bed fusion of high-entropy alloy particle-reinforced stainless steel with enhanced strength, ductility, and corrosion resistance. Mater. Des. 2021, 209, 109950.

31. Zhang, X.; Yang, D.; Jia, Y.; Wang, G. Microstructure and nanoindentation behavior of FeCoNiAlTi high-entropy alloy-reinforced 316L stainless steel composite fabricated by selective laser melting. Materials 2023, 16, 2022.

32. Zhang, X.; Yang, D.; Jia, Y.; Wang, G.; Prashanth, K. G. Microstructure evolution and tensile property of high entropy alloy particle reinforced 316 L stainless steel matrix composites fabricated by laser powder bed fusion. J. Alloys. Compd. 2023, 965, 171430.

33. Ragunath, S.; Radhika, N.; Krishna, S. A.; Pramanik, A. Microstructural, electrochemical, and hot corrosion analysis of CoCrFeCuTi high entropy alloy reinforced titanium matrix composites synthesized by microwave sintering. Int. J. Lightweight. Mater. Manuf. 2025, 8, 141-55.

34. Yuan, Z.; Liu, H.; Ma, Z.; Ma, X.; Wang, K.; Zhang, X. Microstructure and properties of high entropy alloy reinforced titanium matrix composites. Mater. Charact. 2022, 187, 111856.

35. Tang, Y.; Zhang, F.; Xiong, Y.; Hu, Y.; Feng, H. Interface microstructure and strengthening mechanisms of medium-entropy alloy FeCoNiCr particle reinforced titanium composites. Mater. Sci. Eng. A. 2025, 935, 148359.

36. Yuan, Z.; Wang, K.; Li, S.; Jin, X.; Yu, Y.; Guo, M. Effect of sintering temperature on the properties of titanium matrix composites reinforced with Al0.5CoCrFeNi high-entropy alloy particles. Mater. Sci. Eng. A. 2024, 911, 146920.

37. Wu, H.; Xie, J.; Yang, H.; et al. Enhanced mechanical properties in a multi-level heterogeneous lamellar structure eutectic high entropy alloy fabricated by thermomechanical treatment. Mater. Sci. Eng. A. 2025, 937, 148405.

38. Tan, C.; Liu, Y.; Weng, F.; et al. Additive manufacturing of voxelized heterostructured materials with hierarchical phases. Addit. Manuf. 2022, 54, 102775.

39. Tan, C.; Chew, Y.; Weng, F.; et al. Laser aided additive manufacturing of spatially heterostructured steels. Int. J. Mach. Tools. Manuf. 2022, 172, 103817.

40. Ma, X.; Li, F.; Sun, Z.; et al. Achieving gradient martensite structure and enhanced mechanical properties in a metastable β titanium alloy. Metall. Mater. Trans. A. 2019, 50, 2126-38.

41. Wang, X.; Li, J.; Cazes, F.; Hocini, A.; Dirras, G. Numerical modeling on strengthening mechanisms of the harmonic structured design on CP-Ti and Ti-6Al-4V. Int. J. Plast. 2020, 133, 102793.

42. Li, Z.; Pradeep, K. G.; Deng, Y.; Raabe, D.; Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 2016, 534, 227-30.

43. Dasari, S.; Jagetia, A.; Chang, Y.; et al. Engineering multi-scale B2 precipitation in a heterogeneous FCC based microstructure to enhance the mechanical properties of a Al0.5Co1.5CrFeNi1.5 high entropy alloy. J. Alloys. Compd. 2020, 830, 154707.

44. Miao, X.; Liu, G.; Xu, C.; Wang, D.; Han, Z.; Zhang, G. Achieving strength and ductility synergy in (CoCrFeNi)94Ti2Al4 high entropy alloy with multi-scale heterogeneous microstructure. Intermetallics 2024, 164, 108107.

45. Ma, X.; Li, N.; Feng, T.; Xiao, L. Overcoming the strength-ductility trade-off in ω-phase strengthened metastable β titanium alloys via dual heterogeneous structure. Mater. Res. Lett. 2025, 13, 844-53.

46. Yang, C.; Li, X.; Li, C.; et al. Interface and strengthening mechanisms of Al matrix composites reinforced with in-situ CNTs grown on Ti particles. Mater. Des. 2023, 229, 111923.

47. Shao, Y.; Zhao, D.; Guo, W.; Lü, S.; Wu, S. Microstructure optimization of in-situ porous Ti particles reinforced Mg-Cu-Y metallic glass matrix composites via dealloying in metallic melt. Compos. Part. B. Eng. 2025, 296, 112263.

48. Ye, J.; Chen, X.; Luo, H.; et al. Microstructure, mechanical properties and wear resistance of Ti particles reinforced AZ31 magnesium matrix composites. J. Magnes. Alloy. 2022, 10, 2266-79.

49. Senol, S.; Cutolo, A.; Ordnung, D.; Datye, A.; Van Hooreweder, B.; Vanmeensel, K. Improved surface quality and fatigue life of high-strength, hybrid particle reinforced (Ti+B4C)/Al-Cu-Mg metal matrix composite processed by dual-laser powder bed fusion. Procedia. Struct. Integr. 2024, 53, 12-28.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/