REFERENCES
1. Nie, Y.; Li, L.; Wei, Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168-201.
2. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: insights into materials design. Science 2017, 355, eaad4998.
3. Fei, H.; Dong, J.; Feng, Y.; et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63-72.
4. Wang, H.; Xu, S.; Tsai, C.; et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 2016, 354, 1031-6.
5. Shao, M.; Chang, Q.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594-657.
6. Cui, H.; Liu, T.; Chen, Y.; et al. Dynamics of non-metal-regulated FeCo bimetal microenvironment on oxygen reduction reaction activity and intrinsic mechanism. Nano. Res. 2023, 16, 2199-208.
7. Zhang, B.; Zhao, Y.; Li, L.; et al. Bead-like cobalt-nitrogen co-doped carbon nanocage/carbon nanofiber composite: a high-performance oxygen reduction electrocatalyst for zinc-air batteries. Nano. Res. 2023, 16, 545-54.
8. Huang, Z.; Zhan, C.; Yuan, Y.; et al. Designing natural cell-inspired heme-spurred membrane electrode assembly for fuel cells. J. Am. Chem. Soc. 2025, 147, 22818-26.
9. Chung, H. T.; Cullen, D. A.; Higgins, D.; et al. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017, 357, 479-84.
10. Chen, C.; Kang, Y.; Huo, Z.; et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-43.
11. Li, M.; Zhao, Z.; Cheng, T.; et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414-9.
12. Liu, G.; Shih, A. J.; Deng, H.; et al. Site-specific reactivity of stepped Pt surfaces driven by stress release. Nature 2024, 626, 1005-10.
13. Ji, N.; Sheng, H.; Liu, S.; et al. Boosting oxygen reduction in acidic media through integration of Pt-Co alloy effect and strong interaction with carbon defects. Nano. Res. 2024, 17, 7900-8.
14. Zhang, H.; Sun, Q.; He, Q.; et al. Single Cu atom dispersed on S,N-codoped nanocarbon derived from shrimp shells for highly-efficient oxygen reduction reaction. Nano. Res. 2022, 15, 5995-6000.
15. Hu, Y.; Zhu, M.; Luo, X.; et al. Coplanar Pt/C nanomeshes with ultrastable oxygen reduction performance in fuel cells. Angew. Chem. Int. Ed. 2021, 60, 6533-8.
16. Li, Q.; Zhang, D.; Wu, J.; et al. Cation-deficient perovskites greatly enhance the electrocatalytic activity for oxygen reduction reaction. Adv. Mater. 2024, 36, 2309266.
17. Jiao, L.; Li, J.; Richard, L. L.; et al. Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites. Nat. Mater. 2021, 20, 1385-91.
18. Liu, S.; Li, C.; Zachman, M. J.; et al. Atomically dispersed iron sites with a nitrogen-carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nat. Energy. 2022, 7, 652-63.
19. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493-7.
20. Yuan, Y.; Zheng, Y.; Luo, D.; et al. Recent progress on mechanisms, principles, and strategies for high-activity and high-stability non-PGM fuel cell catalyst design. Carbon. Energy. 2024, 6, e426.
21. Chen, M. Strong metal-support interaction of Pt-based electrocatalysts with transition metal oxides/nitrides/carbides for oxygen reduction reaction. Microstructures 2023, 3, 2023025.
22. Wang, X.; Li, Z.; Qu, Y.; et al. Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 2019, 5, 1486-511.
23. Tang, B.; Zhou, Y.; Ji, Q.; et al. A Janus dual-atom catalyst for electrocatalytic oxygen reduction and evolution. Nat. Synth. 2024, 3, 878-90.
24. Ahmad, M.; Chen, J.; Liu, J.; et al. Metal-organic framework-based single-atom electro-/photocatalysts: synthesis, energy applications, and opportunities. Carbon. Energy. 2024, 6, e382.
25. Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334-75.
26. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450-9.
27. Gao, Y.; Yang, C.; Sun, F.; et al. Ligand-Tuning metallic sites in molecular complexes for efficient water oxidation. Angew. Chem. Int. Ed. 2025, 64, e202415755.
28. Sui, R.; Zhang, X.; Wang, X.; et al. Silver based single atom catalyst with heteroatom coordination environment as high performance oxygen reduction reaction catalyst. Nano. Res. 2022, 15, 7968-75.
29. Liu, S.; Liu, M.; Li, X.; et al. Metal organic polymers with dual catalytic sites for oxygen reduction and oxygen evolution reactions. Carbon. Energy. 2023, 5, e303.
30. Wu, J.; Zhu, X.; Li, Q.; et al. Enhancing radiation-resistance and peroxidase-like activity of single-atom copper nanozyme via local coordination manipulation. Nat. Commun. 2024, 15, 6174.
31. Yang, B.; Li, B.; Xiang, Z. Advanced MOF-based electrode materials for supercapacitors and electrocatalytic oxygen reduction. Nano. Res. 2023, 16, 1338-61.
32. Liang, C.; Zhang, T.; Sun, S.; et al. Yolk-shell FeCu/NC electrocatalyst boosting high-performance zinc-air battery. Nano. Res. 2024, 17, 7918-25.
33. Cheng, K.; Liu, Z.; Jiang, D.; Song, M.; Wang, Y. Jellyfish bio-inspired Fe@CNT@CuNC derived from ZIF-8 for cathodic oxygen reduction. Nano. Res. 2024, 17, 2352-9.
34. Li, Q.; Li, Q.; Wang, Z.; Zheng, X.; Cai, S.; Wu, J. Recent advances in hierarchical porous engineering of MOFs and their derived materials for catalytic and battery: methods and application. Small 2024, 20, 2303473.
35. Wen, S.; Yan, L.; Zhao, X. Synergistic effect of structural and interfacial engineering of metal-organic framework-derived superstructures for energy and environmental applications. Adv. Energy. Mater. , 2025, 2502432.
36. Xu, H.; Geng, P.; Feng, W.; Du, M.; Kang, D. J.; Pang, H. Recent advances in metal-organic frameworks for electrochemical performance of batteries. Nano. Res. 2024, 17, 3472-92.
37. Wang, X.; Zhang, G.; Yin, W.; et al. Metal-organic framework-derived phosphide nanomaterials for electrochemical applications. Carbon. Energy. 2022, 4, 246-81.
38. Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C. Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011-61.
39. Bai, J.; Lian, Y.; Deng, Y.; et al. Simultaneous integration of Fe clusters and NiFe dual single atoms in nitrogen-doped carbon for oxygen reduction reaction. Nano. Res. 2024, 17, 2291-7.
40. Liu, Y.; Li, Z.; Zeng, Y.; et al. Host-guest engineering of dual-metal nitrogen carbides as bifunctional oxygen electrocatalysts for long-cycle rechargeable Zn-air battery. Carbon. Energy. 2025, 7, e682.
41. Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy. 2016, 1, 15006.
42. Yin, P.; Yao, T.; Wu, Y.; et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 2016, 55, 10800-5.
43. Zhang, L.; Meng, Q.; Zheng, R.; et al. Microenvironment regulation of M-N-C single-atom catalysts towards oxygen reduction reaction. Nano. Res. 2023, 16, 4468-87.
44. Zhou, T.; Guan, Y.; He, C.; et al. Building Fe atom-cluster composite sites using a site occupation strategy to boost electrochemical oxygen reduction. Carbon. Energy. 2024, 6, e477.
45. Guo, W.; Liu, Y.; Zhou, H.; Wu, Y. Multiscale designing principle of M-N-C towards high performance PEMFC. Microstructures 2025, 5, 2025031.
46. Cheng, W.; Zhao, X.; Su, H.; et al. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy. 2019, 4, 115-22.
47. Xiong, Y.; Yang, Y.; DiSalvo, F. J.; Abruña, H. D. Metal-organic-framework-derived Co-Fe bimetallic oxygen reduction electrocatalysts for alkaline fuel cells. J. Am. Chem. Soc. 2019, 141, 10744-50.
48. Ma, R.; Li, Q.; Yan, J.; et al. Thermodynamically controllable synthesis of ZIF-8 exposing different facets and their applications in single atom catalytic oxygen reduction reactions. Nano. Res. 2023, 16, 9618-24.
49. Yuan, Y.; Zhang, Q.; Li, Y.; et al. Beads-on-string hierarchical structured electrocatalysts for efficient oxygen reduction reaction. Carbon. Energy. 2023, 5, e253.
50. Jiao, L.; Wan, G.; Zhang, R.; Zhou, H.; Yu, S. H.; Jiang, H. L. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media. Angew. Chem. Int. Ed. 2018, 57, 8525-9.
51. Zhuang, Z.; Huang, A.; Tan, X.; et al. p-Block-metal bismuth-based electrocatalysts featuring tunable selectivity for high-performance oxygen reduction reaction. Joule 2023, 7, 1003-15.
52. Chen, H.; Zhang, H.; Chi, K.; Zhao, Y. Pyrimidine-containing covalent organic frameworks for efficient photosynthesis of hydrogen peroxide via one-step two electron oxygen reduction process. Nano. Res. 2024, 17, 9498-506.
53. Luo, E.; Chu, Y.; Liu, J.; et al. Pyrolyzed M-Nx catalysts for oxygen reduction reaction: progress and prospects. Energy. Environ. Sci. 2021, 14, 2158-85.
54. Zhu, X.; Shao, Y.; Xia, D.; et al. When graphitic nitrogen meets pentagons: selective construction and spectroscopic evidence for improved four-electron oxygen reduction electrocatalysis. Adv. Mater. 2025, 37, 2414976.
56. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B. 2004, 108, 17886-92.
57. Huang, X.; Zhao, Z.; Cao, L.; et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230-4.
58. Islam, M. N.; Mansoor Basha, A. B.; Kollath, V. O.; Soleymani, A. P.; Jankovic, J.; Karan, K. Designing fuel cell catalyst support for superior catalytic activity and low mass-transport resistance. Nat. Commun. 2022, 13, 6157.
59. Hu, Y.; Han, X.; Hu, S.; et al. Surface-diffusion-induced amorphization of Pt nanoparticles over Ru oxide boost acidic oxygen evolution. Nano. Lett. 2024, 24, 5324-31.
60. Adabi, H.; Shakouri, A.; Ul Hassan, N.; et al. High-performing commercial Fe-N-C cathode electrocatalyst for anion-exchange membrane fuel cells. Nat. Energy. 2021, 6, 834-43.
61. Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; et al. Symmetry-broken ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem. Int. Ed. 2024, 63, e202319618.
62. Guan, S.; Yuan, Z.; Zhao, S.; et al. Efficient hydrogen generation from ammonia borane hydrolysis on a tandem ruthenium-platinum-titanium catalyst. Angew. Chem. Int. Ed. 2024, 63, e202408193.
63. Li, Y.; Niu, S.; Liu, P.; et al. Ruthenium nanoclusters and single atoms on α-MoC/N-doped carbon achieves low-input/input-free hydrogen evolution via decoupled/coupled hydrazine oxidation. Angew. Chem. Int. Ed. 2024, 63, e202316755.
64. Hu, Y.; Chao, T.; Li, Y.; et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem. Int. Ed. 2023, 62, e202308800.
65. Chao, T.; Xie, W.; Hu, Y.; et al. Reversible hydrogen spillover at the atomic interface for efficient alkaline hydrogen evolution. Energy. Environ. Sci. 2024, 17, 1397-406.
66. Lien, H. T.; Chang, S. T.; Chen, P. T.; et al. Probing the active site in single-atom oxygen reduction catalysts via operando X-ray and electrochemical spectroscopy. Nat. Commun. 2020, 11, 4233.
67. Wang, Q.; Kaushik, S.; Xiao, X.; Xu, Q. Sustainable zinc-air battery chemistry: advances, challenges and prospects. Chem. Soc. Rev. 2023, 52, 6139-90.
68. Shao, W.; Yan, R.; Zhou, M.; et al. Carbon-based electrodes for advanced zinc-air batteries: oxygen-catalytic site regulation and nanostructure design. Electrochem. Energy. Rev. 2023, 6, 11.
69. Zou, Y.; Su, Y.; Yu, Y.; et al. On the role of Zn and Fe doping in nitrogen-carbon electrocatalysts for oxygen reduction. Nano. Res. 2024, 17, 9564-72.
70. Pang, M.; Yang, M.; Zhang, H.; et al. Synthesis techniques, mechanism, and prospects of high-loading single-atom catalysts for oxygen reduction reactions. Nano. Res. 2024, 17, 9371-96.
71. Mun, Y.; Lee, S.; Kim, K.; et al. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 2019, 141, 6254-62.
72. Cao, S.; Sun, T.; Li, J.; Li, Q.; Hou, C.; Sun, Q. The cathode catalysts of hydrogen fuel cell: from laboratory toward practical application. Nano. Res. 2023, 16, 4365-80.
73. Jiao, K.; Xuan, J.; Du, Q.; et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361-9.
74. Bing, Y.; Liu, H.; Zhang, L.; Ghosh, D.; Zhang, J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 2010, 39, 2184-202.
75. Chao, T.; Luo, X.; Zhu, M.; et al. The promoting effect of interstitial hydrogen on the oxygen reduction performance of PtPd alloy nanotubes for fuel cells. Nano. Res. 2023, 16, 2366-72.
76. Yu, H.; Li, C.; Lei, Y.; Xiang, Z. Strategic secondary coordination implantation towards efficient and stable Fe-N-C electrocatalysts for the oxygen reduction reaction in PEMFCs. Angew. Chem. Int. Ed. 2025, 64, e202508141.
77. Tang, B.; Ji, Q.; Zhang, X.; et al. Symmetry breaking of FeN4 Moiety via edge defects for acidic oxygen reduction reaction. Angew. Chem. Int. Ed. 2025, 64, e202424135.
78. Chen, N.; Lee, Y. M. Anion exchange polyelectrolytes for membranes and ionomers. Prog. Polym. Sci. 2021, 113, 101345.
79. Zeng, R.; Li, H.; Shi, Z.; et al. Origins of enhanced oxygen reduction activity of transition metal nitrides. Nat. Mater. 2024, 23, 1695-703.
80. Sun, K.; Dong, J.; Sun, H.; et al. Co(CN)3 catalysts with well-defined coordination structure for the oxygen reduction reaction. Nat. Catal. 2023, 6, 1164-73.
81. Li, Z.; Wang, Z.; Zhao, S.; et al. Alkoxy side chain engineering in metal-free covalent organic frameworks for efficient oxygen reduction. Adv. Mater. 2025, 2501603.
82. Wu, R.; Zuo, J.; Fu, C.; et al. Enhancing rechargeable zinc-air batteries with atomically dispersed zinc iron cobalt planar sites on porous nitrogen-doped carbon. ACS. Nano. 2025, 19, 20215-24.
83. Guo, Y.; Zhao, S.; Zhang, N.; et al. Advanced design strategies for Fe-based metal-organic framework-derived electrocatalysts toward high-performance Zn-air batteries. Energy. Environ. Sci. 2024, 17, 1725-55.
84. Zhang, H.; Meng, Y.; Zhong, H.; et al. Bulk preparation of free-standing single-iron-atom catalysts directly as the air electrodes for high-performance zinc-air batteries. Carbon. Energy. 2023, 5, e289.
85. Sun, C.; Liu, Y.; Lv, Z.; et al. Coordination-environment regulation of atomic Co-Mn dual-sites for efficient oxygen reduction reaction. Nano. Res. 2024, 17, 6841-8.
86. Li, J.; Lu, T.; Fang, Y.; et al. The manipulation of rectifying contact of Co and nitrogen-doped carbon hierarchical superstructures toward high-performance oxygen reduction reaction. Carbon. Energy. 2024, 6, e529.
87. Man, H.; Chen, G.; Wang, F.; et al. Entropy engineering activates Cu-Fe inertia center from prussian blue analogs with micro-strains for oxygen electrocatalysis in Zn-air batteries. Carbon. Energy. 2025, 7, e693.
88. Cui, K.; Tang, X.; Xu, X.; Kou, M.; Lyu, P.; Xu, Y. Crystalline dual-porous covalent triazine frameworks as a new platform for efficient electrocatalysis. Angew. Chem. Int. Ed. 2024, 63, e202317664.
89. Zhang, B.; Dang, J.; Li, H.; et al. Orderly stacked “Tile” architecture with single-atom iron boosts oxygen reduction in liquid and solid-state Zn-air batteries. Adv. Funct. Mater. , 2025, 2502834.
90. Wang, Y.; Yang, T.; Fan, X.; et al. Anchoring Fe species on the highly curved surface of S and N Co-doped carbonaceous nanosprings for oxygen electrocatalysis and a flexible zinc-air battery. Angew. Chem. Int. Ed. 2024, 63, e202313034.
91. Wang, S.; Zhang, M.; Mu, X.; Liu, S.; Wang, D.; Dai, Z. Atomically dispersed multi-site catalysts: bifunctional oxygen electrocatalysts boost flexible zinc-air battery performance. Energy. Environ. Sci. 2024, 17, 4847-70.
92. Khan, I. A.; Qian, Y.; Badshah, A.; Nadeem, M. A.; Zhao, D. Highly porous carbon derived from MOF-5 as a support of ORR electrocatalysts for fuel cells. ACS. Appl. Mater. Interfaces. 2016, 8, 17268-75.
93. Zhao, S.; Yin, H.; Du, L.; et al. Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS. Nano. 2014, 8, 12660-8.
94. Chen, Y.; Kang, H.; Cheng, M.; et al. Single-atom catalysts originated from metal-organic frameworks for sulfate radical-based advanced oxidation processes: critical insights into mechanisms. Adv. Funct. Mater. 2024, 34, 2309223.
95. Chai, L.; Zhang, L.; Wang, X.; et al. Cube-shaped metal-nitrogen-carbon derived from metal-ammonia complex-impregnated metal-organic framework for highly efficient oxygen reduction reaction. Carbon 2020, 158, 719-27.
96. Zhang, S.; Li, S.; Liu, J.; et al. Multiple active cobalt species embedded in microporous nitrogen-doped carbon network for the selective production of hydrogen peroxide. J. Colloid. Interface. Sci. 2023, 631, 101-13.
97. Yang, Y.; Sun, Q.; Xue, J.; et al. MOF-derived N-doped carbon nanosticks coupled with Fe phthalocyanines for efficient oxygen reduction. Chem. Eng. J. 2023, 464, 142668.
98. Chai, L.; Song, J.; Kumar, A.; et al. Bimetallic-MOF derived carbon with single Pt anchored C4 atomic group constructing super fuel cell with ultrahigh power density and self-change ability. Adv. Mater. 2024, 36, 2308989.
99. Du, M.; Chu, B.; Wang, Q.; et al. Dual Fe/I single-atom electrocatalyst for high-performance oxygen reduction and wide-temperature quasi-solid-state Zn-air batteries. Adv. Mater. 2024, 36, 2412978.
100. Liu, D.; Srinivas, K.; Ma, F.; et al. Fe species anchored N, S-doped carbon as nonprecious catalyst for boosting oxygen reduction reaction. J. Alloys. Compd. 2023, 937, 168496.
101. Zhang, H.; Wang, Y.; Wu, T.; et al. Rational design of porous Fex-N@MOF as a highly efficient catalyst for oxygen reduction over a wide pH range. J. Alloys. Compd. 2023, 944, 169039.
102. Zhang, H.; Li, Z.; Yang, X.; et al. Modulator directed synthesis of size-tunable mesoporous MOFs and their derived nanocarbon-based electrocatalysts for oxygen reduction. Chem. Eng. J. 2024, 486, 150088.
103. Liang, Z.; Zhou, G.; Tan, H.; et al. Constructing Co4(SO4)4 clusters within metal-organic frameworks for efficient oxygen electrocatalysis. Adv. Mater. 2024, 36, 2408094.
104. Li, H.; Zhang, M.; Zhou, W.; Duan, J.; Jin, W. Ultrathin 2D catalysts with N-coordinated single Co atom outside Co cluster for highly efficient Zn-air battery. Chem. Eng. J. 2021, 421, 129719.
105. Rong, J.; Chen, W.; Gao, E.; et al. Design of atomically dispersed CoN4 sites and Co clusters for synergistically enhanced oxygen reduction electrocatalysis. Small 2024, 20, 2402323.
106. Huang, Y.; Chen, Y.; Xu, M.; et al. Catalysts by pyrolysis: Transforming metal-organic frameworks (MOFs) precursors into metal-nitrogen-carbon (M-N-C) materials. Mater. Today. 2023, 69, 66-78.
107. Zitolo, A.; Goellner, V.; Armel, V.; et al. Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials. Nature. Mater. 2015, 14, 937-42.
108. Arafat, Y.; Azhar, M. R.; Zhong, Y.; Abid, H. R.; Tadé, M. O.; Shao, Z. Advances in zeolite imidazolate frameworks (ZIFs) derived bifunctional oxygen electrocatalysts and their application in zinc-air batteries. Adv. Energy. Mater. 2021, 11, 2100514.
109. Nguyen, Q. H.; Tinh, V. D. C.; Oh, S.; et al. Metal-organic framework-polymer complex-derived single-atomic oxygen reduction catalyst for anion exchange membrane fuel cells. Chem. Eng. J. 2024, 481, 148508.
110. Yang, Y.; Lou, J.; Zhao, Y.; et al. Ice-templating co-assembly of dual-MOF superstructures derived 2D carbon nanobelts as efficient electrocatalysts. Chem. Eng. J. 2023, 477, 146900.
111. Li, X.; Ye, G.; Zhu, W.; et al. Directional construction of low-coordination Fe-N3 coupled with intrinsic carbon defects for high-efficiency oxygen reduction. ACS. Nano. 2024, 18, 24505-14.
112. Bao, G.; Jin, Y.; Fan, Q.; et al. A ZIF-derived hollow carbon nanoframework loaded with FeCu alloy nanoparticles for efficient oxygen reduction reaction and zinc-air batteries. J. Mater. Chem. A. 2024, 12, 6623-33.
113. Xie, M.; Xiao, X.; Wu, D.; et al. MOF-mediated synthesis of novel PtFeCoNiMn high-entropy nano-alloy as bifunctional oxygen electrocatalysts for zinc-air battery. Nano. Res. 2024, 17, 5288-97.
114. Liao, P. Q.; Shen, J. Q.; Zhang, J. P.; et al. Metal-organic frameworks for electrocatalysis. Coord. Chem. Rev. 2018, 373, 22-48.
115. Pan, Y.; Gao, J.; Li, Y.; et al. Constructing nitrogen-doped carbon hierarchy structure derived from metal-organic framework as high-performance ORR cathode material for Zn-air battery. Small 2024, 20, 2304594.
116. Liu, M.; Zhao, J.; Dong, H.; et al. Electrodeposition of Ni/Cu bimetallic conductive metal-organic frameworks electrocatalysts with boosted oxygen reduction activity for zinc-air batteries. Small 2024, 20, 2405309.
117. Jena, R.; Bhattacharyya, S.; Bothra, N.; Kashyap, V.; Pati, S. K.; Maji, T. K. NixCo1-x@NixCo1-xO/NCNT as trifunctional ORR, OER, and HER electrocatalysts and its application in a Zn-Air Battery. ACS. Appl. Mater. Interfaces. 2023, 15, 27893-904.
118. Lv, C.; Ren, Y.; Li, B.; et al. 1,2,4-triazole-assisted metal-organic framework-derived nitrogen-doped carbon nanotubes with encapsulated Co4N particles as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. J. Colloid. Interface. Sci. 2023, 645, 618-26.
119. Dong, A.; Lin, Y.; Guo, Y.; et al. Immobilization of iron phthalocyanine on MOF-derived N-doped carbon for promoting oxygen reduction in zinc-air battery. J. Colloid. Interface. Sci. 2023, 650, 2056-64.
120. Li, J.; Xia, W.; Guo, Y.; et al. Surface curvature effect on single-atom sites for the oxygen reduction reaction: a model of mesoporous MOF-derived carbon. Chem. Eng. J. 2023, 477, 146841.
121. Li, H.; Zheng, J.; Yang, M.; Duan, J. Electron and configuration engineering of atomic Cu and multi-oxidated Cu2+1O centers via gasifiable reductant strategy for efficient oxygen reduction toward Zn-air battery. Nano. Res. 2023, 16, 2383-91.
122. Zhao, L.; Zhang, J.; Jin, G.; Jiang, Z. J.; Jiang, Z. Metal-organic framework-derived trimetallic particles encapsulated by ultrathin nitrogen-doped carbon nanosheets on a network of nitrogen-doped carbon nanotubes as bifunctional catalysts for rechargeable zinc-air batteries. J. Colloid. Interface. Sci. 2024, 668, 525-39.
123. Peng, Y.; Li, S.; Wang, M.; et al. Facet engineering of a two-dimensional metal-organic framework with uniquely oriented layered-structure for electrocatalytic oxygen reduction reaction. J. Colloid. Interface. Sci. 2024, 658, 518-27.
124. Wang, Q.; Wang, L.; Zhang, S.; et al. MOF-on-MOF-derived FeCo@NC OER&ORR bifunctional electrocatalysts for zinc-air batteries. J. Colloid. Interface. Sci. 2025, 677, 800-11.
125. Rosyara, Y. R.; Muthurasu, A.; Chhetri, K.; et al. Highly porous metal-organic framework entrapped by cobalt telluride-manganese telluride as an efficient bifunctional electrocatalyst. ACS. Appl. Mater. Interfaces. 2024, 16, 10238-50.
126. Xue, Y.; Guo, Y.; Zhang, Q.; Xie, Z.; Wei, J.; Zhou, Z. MOF-derived co and fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn-Air batteries. Nano. Micro. Lett. 2022, 14, 162.
127. Sekar, P.; Vasanthakumar, P.; Shanmugam, R.; et al. Green synthesis of a redox-active riboflavin-integrated Ni-MOF and its versatile electrocatalytic applications towards oxygen evolution and reduction, and HMF oxidation reactions. Green. Chem. 2022, 24, 9233-44.
128. Yan, Q.; Duan, X.; Liu, Y.; Ge, F.; Zheng, H. A hybridization cage-confinement pyrolysis strategy for ultrasmall Ni 3 Fe alloy coated with N-doped carbon nanotubes as bifunctional oxygen electrocatalysts for Zn-air batteries. J. Mater. Chem. A. 2023, 11, 1430-8.
129. Li, J.; Xia, W.; Xu, X.; et al. Selective etching of metal-organic frameworks for open porous structures: mass-efficient catalysts with enhanced oxygen reduction reaction for fuel cells. J. Am. Chem. Soc. 2023, 145, 27262-72.
130. Chen, M.; Li, X.; Yang, F.; et al. Atomically dispersed MnN4 catalysts via environmentally benign aqueous synthesis for oxygen reduction: mechanistic understanding of activity and stability improvements. ACS. Catal. 2020, 10, 10523-34.
131. Liu, Y.; Li, J.; Lv, Z.; et al. Efficient Proton-exchange membrane fuel cell performance of atomic Fe sites via p-d hybridization with Al dopants. J. Am. Chem. Soc. 2024, 146, 12636-44.
132. Yi, S. Y.; Choi, E.; Jang, H. Y.; et al. Insight into defect engineering of atomically dispersed iron electrocatalysts for high-performance proton exchange membrane fuel cell. Adv. Mater. 2023, 35, 2302666.
133. da Silva Freitas, W.; D’Epifanio, A.; Vecchio, C. L.; et al. Tailoring MOF structure via iron decoration to enhance ORR in alkaline polymer electrolyte membrane fuel cells. Chem. Eng. J. 2023, 465, 142987.
134. Yang, X.; Zhu, B.; Gao, Z.; et al. A vacuum vapor deposition strategy to Fe single-atom catalysts with densely active sites for high-performance Zn-air battery. Adv. Sci. 2024, 11, 2306594.
135. Tian, H.; Song, A.; Zhang, P.; et al. High durability of Fe-N-C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media. Adv. Mater. 2023, 35, 2210714.
136. Qu, Q.; Mao, Y.; Ji, S.; et al. Engineering the lewis acidity of fe single-atom sites via atomic-level tuning of spatial coordination configuration for enhanced oxygen reduction. J. Am. Chem. Soc. 2025, 147, 6914-24.
137. Han, Y.; Wang, Y. G.; Chen, W.; et al. Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 2017, 139, 17269-72.
138. Guo, Y.; Zhang, Z.; Chen, D.; et al. Precise construction of asymmetrically coordinated PtCuZn trimetallic atom catalysts for efficient oxygen reduction. Angew. Chem. Int. Ed. 2025, 64, e202507395.
139. Li, Z.; Ji, S.; Liu, Y.; et al. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623-82.
140. Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.
141. Yang, H.; Duan, P.; Zhuang, Z.; et al. Understanding the dynamic evolution of active sites among single atoms, clusters, and nanoparticles. Adv. Mater. 2025, 37, 2415265.
142. Shen, J.; Chen, J.; Qian, Y.; et al. Atomic engineering of single-atom nanozymes for biomedical applications. Adv. Mater. 2024, 36, 2313406.
143. Qiu, Y.; Sun, M.; Wu, J.; et al. Boosting oxygen reduction performances in Pd-based metallenes by co-confining interstitial H and p-block single atoms. Nat. Commun. 2025, 16, 5262.
144. Yang, X. F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740-8.
145. Chen, Y.; Ji, S.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2018, 2, 1242-64.
146. Wang, A.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65-81.
147. Zhang, J.; Zhao, Y.; Chen, C.; et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118-26.
148. Yang, J.; Liu, W.; Xu, M.; et al. Dynamic behavior of single-atom catalysts in electrocatalysis: identification of Cu-N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 14530-9.
149. Li, P.; Guo, Q.; Zhang, J.; Chen, R.; Ding, S.; Su, Y. How the microenvironment dominated by the distance effect to regulate the FeN4 site ORR activity and selectivity? Nano. Res. 2024, 17, 5735-41.
150. Ishiki, N. A.; Teixeira Santos, K.; Bibent, N.; et al. Evidence for the stabilization of FeN4 sites by Pt particles during acidic oxygen reduction. Nat. Commun. 2025, 16, 6404.
151. Xie, X.; Peng, L.; Yang, H.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv. Mater. 2021, 33, 2101038.
152. Xie, X.; Shang, L.; Xiong, X.; Shi, R.; Zhang, T. Fe single-atom catalysts on MOF-5 derived carbon for efficient oxygen reduction reaction in proton exchange membrane fuel cells. Adv. Energy. Mater. 2022, 12, 2102688.
153. Yuan, S.; Zhang, J.; Hu, L.; et al. Decarboxylation-induced defects in MOF-derived single cobalt atom@carbon electrocatalysts for efficient oxygen reduction. Angew. Chem. Int. Ed. 2021, 60, 21685-90.
154. Rong, J.; Gao, E.; Liu, N.; et al. Porphyrinic MOF-derived rich N-doped porous carbon with highly active CoN4C single-atom sites for enhanced oxygen reduction reaction and Zn-air batteries performance. Energy. Storage. Mater. 2023, 56, 165-73.
155. Qu, Y.; Li, Z.; Chen, W.; et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781-6.
156. Jia, Y.; Xue, Z.; Yang, J.; et al. Tailoring the electronic structure of an atomically dispersed zinc electrocatalyst: coordination environment regulation for high selectivity oxygen reduction. Angew. Chem. Int. Ed. 2022, 61, e202110838.
157. Ma, F. X.; Liang, X.; Liu, Z. H.; et al. Impeding thermal atomization enables synthesizing Fe2N cluster liganded single Fe-Atom catalyst for highly efficient oxygen reduction reaction. Angew. Chem. Int. Ed. 2025, 64, e202504935.
158. Ye, W.; Chen, S.; Lin, Y.; et al. Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem 2019, 5, 2865-78.
159. Yan, L.; Mao, Y.; Li, Y.; et al. Sublimation transformation synthesis of dual-atom Fe catalysts for efficient oxygen reduction reaction. Angew. Chem. Int. Ed. 2025, 64, e202413179.
160. Dey, G.; Jana, R.; Saifi, S.; et al. Dual single-atomic Co-Mn sites in metal-organic-framework-derived N-doped nanoporous carbon for electrochemical oxygen reduction. ACS. Nano. 2023, 17, 19155-67.
161. Wang, M.; Zhang, Z.; Zhang, S.; et al. Non-planar nest-like [Fe2S2] cluster sites for efficient oxygen reduction catalysis. Angew. Chem. Int. Ed. 2023, 62, e202300826.
162. Liu, M.; Wang, X.; Cao, S.; et al. Ferredoxin-inspired design of S-synergized Fe-Fe dual-metal center catalysts for enhanced electrocatalytic oxygen reduction reaction. Adv. Mater. 2024, 36, 2309231.
163. Wang, Z.; Ren, J.; Ling, G.; Guo, J.; Lv, Y.; Ren, R. P. Prussian blue-derived atomic Fe/Fe3C@N-doped C catalysts supported by carbon cloth as integrated air cathode for flexible Zn-air batteries. Adv. Sci. 2025, 12, 2407631.
164. Wang, J.; Lang, S. Y.; Shen, Z. Z.; et al. In situ visualization of interfacial processes at nanoscale in non-alkaline Zn-air batteries. Nat. Commun. 2024, 15, 10882.
165. Yao, Y.; Qu, H.; Sun, Z.; Chen, Y.; Yang, S.; Ma, W. Identifying in situ activity and selectivity of oxygen reduction catalysts at the subparticle level. ACS. Nano. 2025, 19, 18502-12.
166. Liu, M.; Zhang, J.; Su, H.; et al. In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction. Nat. Commun. 2024, 15, 1675.







