REFERENCES

1. Zhou, X.; Xue, G.; Luo, H.; Bowen, C. R.; Zhang, D. Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics. Prog. Mater. Sci. 2021, 122, 100836.

2. Hao, J.; Li, W.; Zhai, J.; Chen, H. Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng. R. Rep. 2019, 135, 1-57.

3. Li, F.; Lin, D.; Chen, Z.; et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 2018, 17, 349-54.

4. Wei, H.; Wang, H.; Xia, Y.; et al. An overview of lead-free piezoelectric materials and devices. J. Mater. Chem. C. 2018, 6, 12446-67.

5. Shrout, T. R.; Zhang, S. J. Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 2007, 19, 113-26.

6. Zheng, T.; Wu, H.; Yuan, Y.; et al. The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy. Environ. Sci. 2017, 10, 528-37.

7. Chen, L.; Liu, H.; Qi, H.; Chen, J. High-electromechanical performance for high-power piezoelectric applications: Fundamental, progress, and perspective. Prog. Mater. Sci. 2022, 127, 100944.

8. Maeder, M. D.; Damjanovic, D.; Setter, N. Lead free piezoelectric materials. J. Electroceram. 2004, 13, 385-92.

9. Wu, J. Perovskite lead-free piezoelectric ceramics. J. Appl. Phys. 2020, 127, 190901.

10. Xiao, D. Q.; Wu, J. G.; Wu, L.; et al. Investigation on the composition design and properties study of perovskite lead-free piezoelectric ceramics. J. Mater. Sci. 2009, 44, 5408-19.

11. Qin, H.; Zhao, J.; Chen, X.; et al. Investigation of BiFeO3-BaTiO3 lead-free piezoelectric ceramics with nonstoichiometric bismuth. Microstructures 2023, 3, 2023235.

12. Wu, J.; Xiao, D.; Zhu, J. Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 2015, 115, 2559-95.

13. Wang, H.; Hu, Z.; Guo, W.; et al. Effect of A and B-site ion doping on the structure and properties of KNN-based ceramic coatings. Ceram. Int. 2024, 50, 37809-19.

14. Lv, X.; Wu, J.; Zhu, J.; Xiao, D.; Zhang, X. Temperature stability and electrical properties in La-doped KNN-based ceramics. J. Am. Ceram. Soc. 2018, 101, 4084-94.

15. Liu, D.; Zhu, L. F.; Tang, T.; et al. Textured potassium sodium niobate lead-free ceramics with high d33 and Qm for meeting high-power applications. ACS. Appl. Mater. Interfaces. 2024, 16, 7444-52.

16. Liu, Y.; Thong, H.; Cheng, Y.; Li, J.; Wang, K. Defect-mediated domain-wall motion and enhanced electric-field-induced strain in hot-pressed K0.5Na0.5NbO3 lead-free piezoelectric ceramics. J. App. Phys. 2021, 129, 024102.

17. Lv, X.; Wu, J.; Xiao, D.; Zhu, J.; Zhang, X. Structural evolution of the R-T phase boundary in KNN -based ceramics. J. Am. Ceram. Soc. 2018, 101, 1191-200.

18. Cen, Z.; Zhen, Y.; Feng, W.; et al. Improving piezoelectric properties and temperature stability for KNN-based ceramics sintered in a reducing atmosphere. J. Am. Ceram. Soc. 2018, 101, 4108-17.

19. Cheng, Y.; Xing, J.; Li, X.; et al. Meticulously tailoring phase boundary in KNN-based ceramics to enhance piezoelectricity and temperature stability. J. Am. Ceram. Soc. 2022, 105, 5213-21.

20. Cen, Z.; Bian, S.; Xu, Z.; et al. Simultaneously improving piezoelectric properties and temperature stability of Na0.5K0.5NbO3 (KNN)-based ceramics sintered in reducing atmosphere. J. Adv. Ceram. 2021, 10, 820-31.

21. Peng, Z.; Shi, Q.; Zhang, F.; et al. A new family of high temperature stability and ultra-fast charge-discharge KNN-based lead-free ceramics. J. Mater. Sci. 2022, 57, 9992-10002.

22. Qi, X.; Ren, P.; Tong, X.; Wang, X.; Zhuo, F. Enhanced piezoelectric properties of KNN-based ceramics by synergistic modulation of phase constitution, grain size and domain configurations. J. Eur. Ceram. Soc. 2025, 45, 116874.

23. Gao, S.; Li, P.; Qu, J.; et al. Crystallographic texture and phase structure induced excellent piezoelectric performance in KNN-based ceramics. J. Am. Ceram. Soc. 2023, 106, 3481-90.

24. Liu, Z.; Cai, W.; Zhang, Q.; et al. Dielectric and ferroelectric properties of knn ceramics fabricated by microwave sintering. J. Electron. Mater. 2024, 53, 7170-8.

25. Huang, Y.; Wang, X.; Ma, Y.; Lv, X.; Wu, J. Multiscale understanding the effect of K/Na ratio on electrical properties of high-performance KNN-based ceramics. J. Am. Ceram. Soc. 2024, 107, 355-66.

26. Wang, C.; Fang, B.; Qu, Y.; Chen, Z.; Zhang, S.; Ding, J. Preparation of KNN based lead-free piezoelectric ceramics via composition designing and two-step sintering. J. Alloys. Compd. 2020, 832, 153043.

27. Li, K.; Cong, S.; Bian, L.; et al. Simultaneous enhancement of piezoelectricity and temperature stability in Pb(Ni1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics via Sm-modification. J. Adv. Ceram. 2024, 13, 1578-89.

28. Liu, Q.; Li, J.; Zhao, L.; et al. Niobate-based lead-free piezoceramics: a diffused phase transition boundary leading to temperature-insensitive high piezoelectric voltage coefficients. J. Mater. Chem. C. 2018, 6, 1116-25.

29. Liu, Q.; Zhang, Y.; Gao, J.; et al. Practical high-performance lead-free piezoelectrics: structural flexibility beyond utilizing multiphase coexistence. Natl. Sci. Rev. 2020, 7, 355-65.

30. Xu, L.; Lin, J.; Yang, Y.; et al. Ultrahigh thermal stability and piezoelectricity of lead-free KNN-based texture piezoceramics. Nat. Commun. 2024, 15, 9018.

31. Song, A.; Liu, Y.; Feng, T.; et al. Simultaneous enhancement of piezoelectricity and temperature stability in KNN-based lead-free ceramics via layered distribution of dopants. Adv. Funct. Mater. 2022, 32, 2204385.

32. Zhang, Y.; Yu, Y.; Zhang, N.; Zheng, T.; Wu, J. Simultaneous realization of good piezoelectric and strain temperature stability via the synergic contribution from multilayer design and rare earth doping. Adv. Funct. Mater. 2023, 33, 2211439.

33. Zheng, T.; Yu, Y.; Lei, H.; et al. Compositionally graded KNN-based multilayer composite with excellent piezoelectric temperature stability. Adv. Mater. 2022, 34, e2109175.

34. Li, P.; Gao, S.; Lu, G.; et al. Significantly enhanced piezoelectric temperature stability of KNN-based ceramics through multilayer textured thick films composite. J. Eur. Ceram. Soc. 2024, 44, 3861-8.

35. Li, R.; Sun, X.; Lv, X.; Zheng, T.; Wu, J. Manipulating temperature stability in KNN-based ceramics via defect design. Acta. Materialia. 2021, 218, 117229.

36. Sun, X.; Li, R.; Zhao, C.; Lv, X.; Wu, J. One simple approach, two remarkable enhancements: manipulating defect dipoles and local stress of (K, Na)NbO3-based ceramics. Acta. Mater. 2021, 221, 117351.

37. Tian, S.; Xin, J.; Cheng, Y.; Lai, L.; Li, B.; Dai, Y. Strong pinning effect on domains in piezoelectrics. Acta. Mater. 2024, 280, 120344.

38. Egerton, L.; Dillon, D. M. Piezoelectric and dielectric properties of ceramics in the system potassium - sodium niobate. J. Am. Ceram. Soc. 1959, 42, 438-42.

39. Saito, Y.; Takao, H.; Tani, T.; et al. Lead-free piezoceramics. Nature 2004, 432, 84-7.

40. Zou, J.; Song, M.; Zhou, X.; et al. Enhancing piezoelectric coefficient and thermal stability in lead-free piezoceramics: insights at the atomic-scale. Nat. Commun. 2024, 15, 8591.

41. Dai, Y.; Zhang, X.; Zhou, G. Phase transitional behavior in K0.5Na0.5NbO3-LiTaO3 ceramics. Appl. Phys. Lett. 2007, 90, 262903.

42. Du, X.; Zheng, J.; Belegundu, U.; Uchino, K. Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary. Appl. Phys. Lett. 1998, 72, 2421-3.

43. Randall, C. A.; Kim, N.; Kucera, J.; Cao, W.; Shrout, T. R. Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 1998, 81, 677-88.

44. Ahart, M.; Somayazulu, M.; Cohen, R. E.; et al. Origin of morphotropic phase boundaries in ferroelectrics. Nature 2008, 451, 545-8.

45. Liu, Y.; Xu, Z.; Liu, L.; Li, F. Morphotropic phase boundary-like properties in a ferroelectric-paraelectric nanocomposite. J. Appl. Phys. 2019, 126, 124102.

46. Feng, X.; Zhao, Y.; Wang, Y.; et al. Enhanced electrocaloric effect in KNN-based ceramic via polymorphic phase transition. Ceram. Int. 2024, 50, 1788-94.

47. Huan, Y.; Wei, T.; Wang, Z.; Lei, C.; Chen, F.; Wang, X. Polarization switching and rotation in KNN-based lead-free piezoelectric ceramics near the polymorphic phase boundary. J. Eur. Ceram. Soc. 2019, 39, 1002-10.

48. Liu, G.; Kong, L.; Hu, Q.; Zhang, S. Diffused morphotropic phase boundary in relaxor-PbTiO3 crystals: high piezoelectricity with improved thermal stability. Appl. Phys. Rev. 2020, 7, 021405.

49. Zhang, Y.; Li, L.; Shen, B.; Zhai, J. Effect of orthorhombic-tetragonal phase transition on structure and piezoelectric properties of KNN-based lead-free ceramics. Dalton. Trans. 2015, 44, 7797-802.

50. Zhao, C.; Yin, J.; Huang, Y.; Wu, J. Polymorphic characteristics challenging electrical properties in lead-free piezoceramics. Dalton. Trans. 2019, 48, 11250-8.

51. Li, B.; Xiong, C.; Cao, X.; Wei, X.; Qiu, Y.; Gao, D. Temperature stability of multilayer symmetric KNN-based ceramics with continuous phase transitions. Appl. Phys. Lett. 2025, 126, 031901.

52. Zhai, Y.; Du, J.; Chen, C.; et al. Temperature stability and electrical properties of Tm2O3 doped KNN-based ceramics. J. Mater. Sci. Mater. Electron. 2019, 30, 4716-25.

53. Sun, X.; Zhang, J.; Lv, X.; et al. Understanding the piezoelectricity of high-performance potassium sodium niobate ceramics from diffused multi-phase coexistence and domain feature. J. Mater. Chem. A. 2019, 7, 16803-11.

54. Yao, F.; Wang, K.; Jo, W.; et al. Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics. Adv. Funct. Mater. 2016, 26, 1217-24.

55. Wang, K.; Yao, F.; Jo, W.; et al. Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics. Adv. Funct. Mater. 2013, 23, 4079-86.

56. Hua, Y.; Qian, J.; Yang, Y.; et al. Broad temperature plateau for high piezoelectric coefficient by embedding PNRs in singe-phase KNN-based ceramics. Adv. Funct. Mater. 2025, 35, 2414348.

57. Liu, Q.; Zhang, Y.; Gao, J.; et al. High-performance lead-free piezoelectrics with local structural heterogeneity. Energy. Environ. Sci. 2018, 11, 3531-9.

58. Zheng, T.; Wu, J.; Xiao, D.; Zhu, J. Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 2018, 98, 552-624.

59. Wang, K.; Li, J. (K, Na)NbO3-based lead-free piezoceramics: phase transition, sintering and property enhancement. J. Adv. Ceram. 2012, 1, 24-37.

60. Hou, J.; Dai, Z.; Liu, C.; Yasui, S.; Cong, Y.; Gu, S. Enhanced photoelectric properties for BiZn0.5Zr0.5O3 modified KNN-based lead-free ceramics. J. Alloys. Compd. 2023, 960, 170639.

61. Wang, R.; Wang, K.; Yao, F.; et al. Temperature stability of lead-free niobate piezoceramics with engineered morphotropic phase boundary. J. Am. Ceram. Soc. 2015, 98, 2177-82.

62. Liu, Q.; Zhang, Y.; Zhao, L.; et al. Simultaneous enhancement of piezoelectricity and temperature stability in (K,Na)NbO3-based lead-free piezoceramics by incorporating perovskite zirconates. J. Mater. Chem. C. 2018, 6, 10618-27.

63. Zhang, M. H.; Wang, K.; Du, Y. J.; et al. High and Temperature-Insensitive Piezoelectric Strain in Alkali Niobate Lead-free Perovskite. J. Am. Chem. Soc. 2017, 139, 3889-95.

64. Qin, Y.; Zhang, J.; Yao, W.; Lu, C.; Zhang, S. Domain configuration and thermal stability of (K0.48Na0.52)(Nb0.96Sb0.04)O3-Bi0.50(Na0.82K0.18)0.50ZrO3Piezoceramics with High d33 coefficient. ACS. Appl. Mater. Interfaces. 2016, 8, 7257-65.

65. Liu, B.; Li, P.; Shen, B.; et al. Simultaneously enhanced piezoelectric response and piezoelectric voltage coefficient in textured KNN-based ceramics. J. Am. Ceram. Soc. 2018, 101, 265-73.

66. Zhou, J.; Wang, K.; Yao, F.; et al. Multi-scale thermal stability of niobate-based lead-free piezoceramics with large piezoelectricity. J. Mater. Chem. C. 2015, 3, 8780-7.

67. Guan, S.; Yang, H.; Cheng, S.; et al. Phase structure, domain structure, thermal stability, and high-temperature piezoelectric response of BiFeO3-BaTiO3 lead-free piezoelectric ceramics. Ceram. Int. 2024, 50, 384-93.

68. Shvartsman, V. V.; Kholkin, A. L.; Orlova, A.; Kiselev, D.; Bogomolov, A. A.; Sternberg, A. Polar nanodomains and local ferroelectric phenomena in relaxor lead lanthanum zirconate titanate ceramics. Appl. Phys. Lett. 2005, 86, 202907.

69. Zhang, X.; Wang, Z.; Li, P.; et al. Simultaneous achievement of large strain, low hysteresis, and high-temperature stability in textured BT-based piezoelectric ceramics. J. Adv. Ceram. 2025, 14, 9221025.

70. Li, P.; Zhai, J.; Shen, B.; et al. Ultrahigh piezoelectric properties in textured (K,Na)NbO3 -based lead-free ceramics. Adv. Mater. 2018, 30, 1705171.

71. Jia, P.; Zheng, Z.; Li, Y.; Li, Z.; Liu, T.; Wang, Y. The achieving enhanced piezoelectric performance of KNN-based ceramics: decisive role of multi-phase coexistence induced by lattice distortion. J. Alloys. Compd. 2023, 930, 167416.

72. Li, T.; Liu, C.; Ke, X.; et al. High electrostrictive strain in lead-free relaxors near the morphotropic phase boundary. Acta. Mater. 2020, 182, 39-46.

73. Sun, S.; Zhang, Y.; Fan, L.; et al. Role of tetragonal distortion on domain switching and lattice strain of piezoelectrics by in-situ synchrotron diffraction. Scr. Mater. 2021, 194, 113627.

74. Xu, G.; Wen, J.; Stock, C.; Gehring, P. M. Phase instability induced by polar nanoregions in a relaxor ferroelectric system. Nat. Mater. 2008, 7, 562-6.

75. Roukos, R.; Zaiter, N.; Chaumont, D. Relaxor behaviour and phase transition of perovskite ferroelectrics-type complex oxides (1-x)Na0.5Bi0.5TiO3-xCaTiO3 system. J. Adv. Ceram. 2018, 7, 124-42.

76. Qian, J.; Yu, Z.; Ge, G.; et al. Topological vortex domain engineering for high dielectric energy storage performance. Adv. Energy. Mater. 2024, 14, 2303409.

77. Lin, J.; Wang, Y.; Xiong, R.; et al. Tailoring micro-structure of eco-friendly temperature-insensitive transparent ceramics achieving superior piezoelectricity. Acta. Mater. 2022, 235, 118061.

78. Zhao, L.; Gao, J.; Liu, Q.; Zhang, S.; Li, J. F. Silver niobate lead-free antiferroelectric ceramics: enhancing energy storage density by B-site doping. ACS. Appl. Mater. Interfaces. 2018, 10, 819-26.

79. Lin, L.; Li, C.; Liu, J.; Bai, W.; Li, W.; Zhai, J. Boosting capacitive performance of lead-free relaxor ferroelectrics by introducing a linear dielectric. Ceram. Int. 2024, 50, 829-37.

80. Rossetti, G. A.; Khachaturyan, A. G.; Akcay, G.; Ni, Y. Ferroelectric solid solutions with morphotropic boundaries: vanishing polarization anisotropy, adaptive, polar glass, and two-phase states. J. Appl. Phys. 2008, 103, 114113.

81. Sluka, T.; Tagantsev, A. K.; Damjanovic, D.; Gureev, M.; Setter, N. Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nat. Commun. 2012, 3, 748.

82. Catalan, G.; Seidel, J.; Ramesh, R.; Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 2012, 84, 119-56.

83. Li, F.; Zhang, S.; Yang, T.; et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 2016, 7, 13807.

84. Westphal, V.; Kleemann, W.; Glinchuk, M. Diffuse phase transitions and random-field-induced domain states of the ‘‘relaxor’’ferroelectric PbMg1/3Nb2/3O3. Phys. Rev. Lett. 1992, 68, 847.

85. Zheng, T.; Wu, J. Electric field compensation effect driven strain temperature stability enhancement in potassium sodium niobate ceramics. Acta. Mater. 2020, 182, 1-9.

86. Luo, B.; Feng, W.; Dai, S.; Song, H.; Wu, Y.; Zhang, J. Stabilizing oxygen vacancies and promoting electrostrain in lead-free potassium niobate-based piezoelectrics over wide temperature ranges. J. Adv. Ceram. 2024, 13, 1965-73.

87. Gao, J.; Xue, D.; Wang, Y.; et al. Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics. Appl. Phys. Lett. 2011, 99, 092901.

88. Xu, K.; Li, J.; Lv, X.; et al. Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv. Mater. 2016, 28, 8519-23.

89. Zhao, C.; Wu, B.; Wang, K.; et al. Practical high strain with superior temperature stability in lead-free piezoceramics through domain engineering. J. Mater. Chem. A. 2018, 6, 23736-45.

90. Lv, X.; Zhang, X.; Wu, J. Nano-domains in lead-free piezoceramics: a review. J. Mater. Chem. A. 2020, 8, 10026-73.

91. Zhao, C.; Gao, S.; Yang, T.; et al. Precipitation hardening in ferroelectric ceramics. Adv. Mater. 2021, 33, e2102421.

92. Damjanovic, D. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J. Am. Ceram. Soc. 2005, 88, 2663-76.

93. Zhang, W.; Bhattacharya, K. A computational model of ferroelectric domains. Part I: model formulation and domain switching. Acta. Mater. 2005, 53, 185-98.

94. Nagarajan, V.; Roytburd, A.; Stanishevsky, A.; et al. Dynamics of ferroelastic domains in ferroelectric thin films. Nat. Mater. 2003, 2, 43-7.

95. Zhao, Y.; Dai, Y.; Zhou, H.; Zhang, X. A rational designed multi-layered structure to improve the temperature stability of Li modified (K,Na)NbO3 piezoceramics. J. Alloys. Compd. 2018, 731, 39-43.

96. Zeng, S.; Zou, J.; Song, M.; et al. The mechanism for the enhanced piezoelectricity, dielectric property and thermal stability in (K,Na)NbO3 ceramics. Acta. Mater. 2025, 287, 120801.

97. Zhang, J.; Wang, C.; Bowen, C. Piezoelectric effects and electromechanical theories at the nanoscale. Nanoscale 2014, 6, 13314-27.

98. Fulton C, Gao H. Effect of local polarization switching on piezoelectric fracture. J. Mechan. Phys. Solids. 2001, 49, 927-52.

99. Li, F.; Zhang, S.; Damjanovic, D.; Chen, L.; Shrout, T. R. Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics. Adv. Funct. Mater. 2018, 28, 1801504.

100. Zhang, Y.; Qi, H.; Sun, S.; et al. Ultrahigh piezoelectric performance benefiting from quasi-isotropic local polarization distribution in complex lead-based perovskite. Nano. Energy. 2022, 104, 107910.

101. Rödel, J.; Webber, K. G.; Dittmer, R.; Jo, W.; Kimura, M.; Damjanovic, D. Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 2015, 35, 1659-81.

102. Lv, X.; Zhu, J.; Xiao, D.; Zhang, X. X.; Wu, J. Emerging new phase boundary in potassium sodium-niobate based ceramics. Chem. Soc. Rev. 2020, 49, 671-707.

103. Zhang, S.; Xia, R.; Shrout, T. R.; Zang, G.; Wang, J. Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free ceramics. J. Appl. Phys. 2006, 100, 104108.

104. Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 1992, 358, 136-8.

105. Wang, Z.; Xiao, D.; Wu, J.; et al. New lead-free (1-x)(K0.5Na0.5)NbO3-x(Bi0.5Na0.5)ZrO3 ceramics with high piezoelectricity. J. Am. Ceram. Soc. 2014, 97, 688-90.

106. Batra, K.; Sinha, N.; Kumar, B. Lead-free 0.95(K0.6Na0.4)NbO3-0.05(Bi0.5Na0.5)ZrO3 ceramic for high temperature dielectric, ferroelectric and piezoelectric applications. J. Alloys. Compd. 2020, 818, 152874.

107. Lv, X.; Wu, J.; Zhang, X. Reduced degree of phase coexistence in KNN-Based ceramics by competing additives. J. Eur. Ceram. Soc. 2020, 40, 2945-53.

108. Yao, W.; Zhang, J.; Zhou, C.; Liu, D.; Su, W. Giant piezoelectricity, rhombohedral-orthorhombic-tetragonal phase coexistence and domain configurations of (K,Na)(Nb,Sb)O3-BiFeO3-(Bi, Na)ZrO3 ceramics. J. Eur. Ceram. Soc. 2020, 40, 1223-31.

109. Li, P.; Fu, Z.; Wang, F.; et al. High piezoelectricity and stable output in BaHfO3 and (Bi0.5Na0.5)ZrO3 modified (K0.5Na0.5)(Nb0.96Sb0.04)O3 textured ceramics. Acta. Mater. 2020, 199, 542-50.

110. Liu, Q.; Pan, E.; Liu, F.; Li, J. (K,Na)NbO3-based lead-free ceramics with enhanced temperature-stable piezoelectricity and efficient red luminescence. J. Adv. Ceram. 2023, 12, 373-85.

111. Tian, S.; Li, B.; Dai, Y. Distinguishing electrotensile strain and electrobending strain. J. Adv. Ceram. 2025, 14, 9221048.

112. Ren, X. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 2004, 3, 91-4.

113. Huang, Y.; Tian, S.; Feng, M.; et al. The unipolarity formed in the CuO-doped (K0.48Na0.52)0.96Li0.04Nb0.95Ta0.05O3 ceramics. Mater. Lett. 2021, 283, 128825.

114. Tian, S.; Li, B.; Dai, Y. Defect dipole asymmetry response induces electrobending deformation in thin piezoceramics. Phys. Rev. Lett. 2024, 133, 186802.

115. Liao, Y.; Wang, D.; Wang, H.; Zhou, L.; Zheng, Q.; Lin, D. Modulation of defects and electrical behaviors of Cu-doped KNN ceramics by fluorine-oxygen substitution. Dalton. Trans. 2020, 49, 1311-8.

116. Hong, Z.; Ke, X.; Wang, D.; Yang, S.; Ren, X.; Wang, Y. Role of point defects in the formation of relaxor ferroelectrics. Acta. Mater. 2022, 225, 117558.

117. Wang, D.; Fotinich, Y.; Carman, G. P. Influence of temperature on the electromechanical and fatigue behavior of piezoelectric ceramics. J. Appl. Phys. 1998, 83, 5342-50.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/