REFERENCES
1. Sathiyamoorthi, P.; Kim, H. S. High-entropy alloys with heterogeneous microstructure: processing and mechanical properties. Prog. Mater. Sci. 2022, 123, 100709.
2. Ma, E.; Zhu, T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today. 2017, 20, 323-31.
3. Park, H. K.; Kim, Y.; Jung, J.; et al. Efficient design of harmonic structure using an integrated hetero-deformation induced hardening model and machine learning algorithm. Acta. Mater. 2023, 244, 118583.
4. Tang, X.; Peng, Q.; Long, J.; et al. Recent progress on plastic forming of laminated metal composites: processes, heterogeneous deformation, and interfacial regulation. J. Mater. Sci. Technol. 2025, 229, 67-91.
5. Shen, J.; Choi, Y. T.; Yang, J.; et al. Fabrication of spatially-variable heterostructured CoCrFeMnNi high entropy alloy by laser processing. Mat. Sci. Eng. A. 2024, 896, 146272.
6. Zhang, C.; Zhu, C.; Cao, P.; et al. Aged metastable high-entropy alloys with heterogeneous lamella structure for superior strength-ductility synergy. Acta. Mater. 2020, 199, 602-12.
7. Fang, T. H.; Li, W. L.; Tao, N. R.; Lu, K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 2011, 331, 1587-90.
8. Pan, Q. S.; Long, J. Z.; Jing, L. J.; Tao, N. R.; Lu, L. Cyclic strain amplitude-dependent fatigue mechanism of gradient nanograined Cu. Acta. Mater. 2020, 196, 252-60.
9. Zhang, B. H.; Chen, J.; Wang, P. F.; Sun, B. T.; Cao, Y. Enhanced strength-ductility of CoCrFeMnNi high-entropy alloy with inverse gradient-grained structure prepared by laser surface heat-treatment technique. J. Mater. Sci. Technol. 2022, 111, 111-9.
10. Cheng, Z.; Zhou, H.; Lu, Q.; Gao, H.; Lu, L. Extra strengthening and work hardening in gradient nanotwinned metals. Science 2018, 362, eaau1925.
11. Wei, Y.; Li, Y.; Zhu, L.; et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat. Commun. 2014, 5, 3580.
12. Pan, Q.; Zhang, L.; Feng, R.; et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility. Science 2021, 374, 984-9.
13. Shi, P.; Ren, W.; Zheng, T.; et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat. Commun. 2019, 10, 489.
14. Du, X. H.; Li, W. P.; Chang, H. T.; et al. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy. Nat. Commun. 2020, 11, 2390.
15. Cao, S.; Liu, H.; Jiang, J.; et al. Effect of heat treatment on gradient microstructure and tensile property of laser powder bed fusion fabricated 15-5 precipitation hardening stainless steel. Acta. Metall. Sin. 2024, 37, 181-95.
16. Grässel, O.; Krüger, L.; Frommeyer, G.; Meyer, L. W. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development - properties - application. Int. J. Plast. 2000, 16, 1391-409.
17. Li, Z.; Körmann, F.; Grabowski, B.; Neugebauer, J.; Raabe, D. Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity. Acta. Mater. 2017, 136, 262-70.
18. Liu, S. F.; Wu, Y.; Wang, H. T.; et al. Stacking fault energy of face-centered-cubic high entropy alloys. Intermetallics 2018, 93, 269-73.
19. Liu, S.; Wu, Y.; Wang, H.; et al. Transformation-reinforced high-entropy alloys with superior mechanical properties via tailoring stacking fault energy. J. Alloys. Compd. 2019, 792, 444-55.
20. Sohrabi, M. J.; Mehranpour, M. S.; Heydarinia, A.; et al. Deformation-induced martensitic transformation kinetics in TRIP-assisted steels and high-entropy alloys. Acta. Mater. 2024, 280, 120354.
21. Guo, N.; Zhang, Z.; Dong, Q.; et al. Strengthening and toughening austenitic steel by introducing gradient martensite via cyclic forward/reverse torsion. Mater. Design. 2018, 143, 150-9.
22. Cao, S. C.; Liu, J.; Zhu, L.; et al. Nature-inspired hierarchical steels. Sci. Rep. 2018, 8, 5088.
23. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1-19.
24. Li, Z.; Pradeep, K. G.; Deng, Y.; Raabe, D.; Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 2016, 534, 227-30.
25. Ding, Q.; Zhang, Y.; Chen, X.; et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 2019, 574, 223-7.
26. Hasan, M. N.; Liu, Y. F.; An, X. H.; et al. Simultaneously enhancing strength and ductility of a high-entropy alloy via gradient hierarchical microstructures. Int. J. Plast. 2019, 123, 178-95.
27. Courtney, T.H. Mechanical behavior of materials, Waveland Press, 2005.
28. Yang, M.; Yan, D.; Yuan, F.; Jiang, P.; Ma, E.; Wu, X. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 7224-9.
29. Chen, W.; An, X.; Wang, Z.; Li, Y.; Gu, J.; Song, M. Grain size dependent deformation behavior of a metastable Fe40Co20Cr20Mn10Ni10 high-entropy alloy. J. Alloys. Compd. 2021, 883, 160876.
30. Zhang, X.; Sawaguchi, T. Twinning of deformation-induced ε-martensite in Fe-30Mn-6Si shape memory alloy. Acta. Mater. 2018, 143, 237-47.
31. Martinez, M.; Hug, E. Characterization of deformation twinning in polycrystalline cobalt: a quantitative analysis. Materialia 2019, 7, 100420.
32. Wagner, C.; Laplanche, G. Effects of stacking fault energy and temperature on grain boundary strengthening, intrinsic lattice strength and deformation mechanisms in CrMnFeCoNi high-entropy alloys with different Cr/Ni ratios. Acta. Mater. 2023, 244, 118541.
33. Ponge, D.; MiUán, J.; Raabe, D. Design of lean maraging TRIP steels. In Advanced Steels 2011, Proceedings of the ICAS, Guilin, China, November 9-11, 2010; Weng, Y., Dong, H., Gan, Y., Eds.; Springer-Verlag: Berlin, Heidelberg, 2011; pp 199-208.
34. Yang, X. S.; Sun, S.; Zhang, T. Y. The mechanism of bcc α’ nucleation in single hcp ε laths in the fcc γ → hcp ε → bcc α’ martensitic phase transformation. Acta. Mater. 2015, 95, 264-73.
35. Soleimani, M.; Kalhor, A.; Mirzadeh, H. Transformation-induced plasticity (TRIP) in advanced steels: a review. Mater. Sci. Eng. A. 2020, 795, 140023.
36. Shen, S.; Xie, P.; Wu, C. Temperature dependence of mechanical properties and deformation mechanism of Fe-25Mn-3Al-3Si alloy at high strain rate. Mater. Sci. Eng. A. 2023, 872, 144912.
37. Su, J.; Wu, X.; Raabe, D.; Li, Z. Deformation-driven bidirectional transformation promotes bulk nanostructure formation in a metastable interstitial high entropy alloy. Acta. Mater. 2019, 167, 23-39.
38. Singh, D.; Singh, A.; Sawaguchi, T. Elucidating deformation pathways and interface characteristic of self-accommodated dual γ/ε phase microstructure in Fe-Mn-Si-Al alloy. Mater. Charact. 2024, 207, 113521.
39. Yang, J. H.; Wayman, C. M. Intersecting-shear mechanisms for the formation of secondary ϵ martensite variants. Acta. Metall. Mater. 1992, 40, 2025-31.
40. Yang, J. H.; Wayman, C. M. On secondary variants formed at intersections of ϵ martensite variants. Acta. Metall. Mater. 1992, 40, 2011-23.
41. Mishra, R. S.; Haridas, R. S.; Agrawal, P. High entropy alloys - tunability of deformation mechanisms through integration of compositional and microstructural domains. Mater. Sci. Eng. A. 2021, 812, 141085.
42. Liu, J.; Luo, X.; Huang, B.; et al. Nano-twinning and martensitic transformation behaviors in 316L austenitic stainless steel during large tensile deformation. Acta. Metall. Sin. 2023, 36, 758-70.
43. Huang, M.; Wang, L.; Wang, C.; et al. Optimizing crack initiation energy in austenitic steel via controlled martensitic transformation. J. Mater. Sci. Technol. 2024, 198, 231-42.
44. Bu, Y.; Li, Z.; Liu, J.; Wang, H.; Raabe, D.; Yang, W. Nonbasal slip systems enable a strong and ductile hexagonal-close-packed high-entropy phase. Phys. Rev. Lett. 2019, 122, 075502.
45. Chen, S.; Oh, H. S.; Gludovatz, B.; et al. Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy. Nat. Commun. 2020, 11, 826.
46. Li, W.; Xie, D.; Li, D.; Zhang, Y.; Gao, Y.; Liaw, P. K. Mechanical behavior of high-entropy alloys. Prog. Mater. Sci. 2021, 118, 100777.
47. Mughrabi, H. On the role of strain gradients and long-range internal stresses in the composite model of crystal plasticity. Mater. Sci. Eng. A. 2001, 317, 171-80.
48. Liu, X. L.; Xue, Q. Q.; Wang, W.; et al. Back-stress-induced strengthening and strain hardening in dual-phase steel. Materialia 2019, 7, 100376.
49. Kim, R. E.; Lee, J. H.; Haftlang, F.; et al. Hierarchical ferrous medium entropy with heterogeneous precipitates embedded in core-shell grain structure for superior mechanical properties. Acta. Mater. 2024, 281, 120397.
50. Geng, X.; Gao, J.; Huang, Y.; et al. A novel dual-heterogeneous-structure ultralight steel with high strength and large ductility. Acta. Mater. 2023, 252, 118925.
51. Wu, H.; Fan, G. An overview of tailoring strain delocalization for strength-ductility synergy. Prog. Mater. Sci. 2020, 113, 100675.