REFERENCES

1. Yokoyama, T.; Eguchi, K. Anisotropic thermal expansion and cooperative Invar and anti-Invar effects in mn alloys. Phys. Rev. Lett. 2013, 110, 075901.

2. Gao, Q.; Sun, Y.; Shi, N.; et al. Large isotropic negative thermal expansion in water-free Prussian blue analogues of ScCo(CN)6. Scripta. Materialia. 2020, 187, 119-24.

3. Attfield, J. P. Condensed-matter physics: a fresh twist on shrinking materials. Nature 2011, 480, 465-6.

4. Song, Y.; Sun, Q.; Xu, M.; et al. Negative thermal expansion in (Sc,Ti)Fe2 induced by an unconventional magnetovolume effect. Mater. Horiz. 2020, 7, 275-81.

5. Lohaus, S. H.; Heine, M.; Guzman, P.; et al. A thermodynamic explanation of the Invar effect. Nat. Phys. 2023, 19, 1642-8.

6. Pang, X.; Song, Y.; Shi, N.; Xu, M.; Zhou, C.; Chen, J. Design of zero thermal expansion and high thermal conductivity in machinable xLFCS/Cu metal matrix composites. Compos. Part. B. Eng. 2022, 238, 109883.

7. Schilfgaarde M, Abrikosov IA, Johansson B. Origin of the Invar effect in iron-nickel alloys. Nature 1999, 400, 46-9.

8. Diop, L. V.; Amara, M.; Isnard, O. Large magnetovolume effects due to transition from the ferromagnetic to antiferromagnetic state in Hf0.825Ta0.175Fe2 intermetallic compound. J. Phys. Condens. Matter. 2013, 25, 416007.

9. Chen, F.; Xie, H.; Huo, M.; Wu, H.; Li, L.; Jiang, Z. Effects of magnetic field and hydrostatic pressure on the antiferromagnetic-ferromagnetic transition and magneto-functional properties in Hf1-xTaxFe2 alloys. Tungsten 2023, 5, 503-11.

10. Dong, X.; Lin, K.; Yu, C.; et al. Zero thermal expansion in non-stoichiometric and single-phase (Hf,Nb)Fe2.5 alloy. Scr. Mater. 2023, 229, 115388.

11. Yan-jun, H.; Zhong-ying, J.; Nan, C.; Zhi-da, H.; Shu-zhen, L.; Yuan-fu, H. Magnetic properties of Hf0.8Ta0.2(Fe0.97A0.03)2 (A=Al, Co, Mn) systems. Chinese. Phys. Lett. 2006, 23, 3309-12.

12. Duijn, H. G. M.; Brück, E.; Menovsky, A. A.; et al. Magnetic and transport properties of the itinerant electron system Hf1-xTaxFe2. J. Appl. Phys. 1997, 81, 4218-20.

13. Diop, L.; Isnard, O.; Suard, E.; Benea, D. Neutron diffraction study of the itinerant-electron metamagnetic Hf0.825Ta0.175Fe2 compound. Solid. State. Commun. 2016, 229, 16-21.

14. Ouyang, Z.; Rao, G.; Yang, H.; et al. Structure and unusual magnetic properties in the itinerant electron system Hf0.8Ta0.2(Fe1-xCox)2. J. Appl. Phys. 2004, 370, 18-24.

15. Ma, R.; Liu, Z.; Chen, L.; et al. Transition from isotropic positive to negative thermal expansion by local Zr6O8 node distortion in MOF-801. Microstructures 2024, 4, 2024023.

16. Kennedy, C. A.; White, M. A. Unusual thermal conductivity of the negative thermal expansion material, ZrW2O8. Solid. State. Commun. 2005, 134, 271-6.

17. Jiao, Y. C.; Li, M.; Qu, B. Y.; et al. First-principles study of the negative thermal expansion of PbTiO3. Comput. Mater. Sci. 2016, 124, 92-7.

18. Azuma, M.; Chen, W.; Seki, H.; et al. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer. Nat. Commun. 2011, 2, 347.

19. Zheng, X. G.; Kubozono, H.; Yamada, H.; et al. Giant negative thermal expansion in magnetic nanocrystals. Nat. Nanotechnol. 2008, 3, 724-6.

20. Cao, Y.; Xu, Y.; Khmelevskyi, S.; et al. Interplanar magnetic orders and symmetry-tuned zero thermal expansion in Kagomé metal (Zr,Ta)Fe2. Chem. Mater. 2023, 35, 9167-74.

21. Song, Y.; Chen, J.; Liu, X.; et al. Zero thermal expansion in magnetic and metallic Tb(Co,Fe)2 intermetallic compounds. J. Am. Chem. Soc. 2018, 140, 602-5.

22. Huang, R.; Liu, Y.; Fan, W.; et al. Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds. J. Am. Chem. Soc. 2013, 135, 11469-72.

23. Li, S.; Huang, R.; Zhao, Y.; Wang, W.; Han, Y.; Li, L. Zero thermal expansion achieved by an electrolytic hydriding method in La(Fe,Si)13 compounds. Adv. Funct. Mater. 2017, 27, 1604195.

24. Xu, M.; Song, Y.; Xu, Y.; et al. High-temperature zero thermal expansion in HfFe2+δ from added ferromagnetic paths. Chem. Mater. 2022, 34, 9437-45.

25. Yuan, X.; Wang, B.; Sun, Y.; et al. High‐entropy anti‐perovskites with enhanced negative thermal expansion behavior. Adv. Funct. Mater. 2024, 34, 2404629.

26. Cen, D.; Wang, B.; Chu, R.; et al. Design of (Hf,Ta)Fe2/Fe composite with zero thermal expansion covering room temperature. Scr. Mater. 2020, 186, 331-5.

27. Bag, P.; Rawat, R.; Chaddah, P.; Babu, P. D.; Siruguri, V. Unconventional thermal effects across first-order magnetic transition in the Ta-doped HfFe2 intermetallic. Phys. Rev. B. 2016, 93, 014416.

28. Li, B.; Luo, X. H.; Wang, H.; et al. Colossal negative thermal expansion induced by magnetic phase competition on frustrated lattices in Laves phase compound (Hf,Ta) Fe2. Phys. Rev. B. 2016, 93, 224405.

29. Qiao, Y.; Song, Y.; Lin, K.; et al. Negative thermal expansion in (Hf,Ti)Fe2 induced by the ferromagnetic and antiferromagnetic phase coexistence. Inorg. Chem. 2019, 58, 5380-3.

30. Wada, H.; Shimamura, N.; Shiga, M. Thermal and transport properties of Hf1-xTaxFe2. Phys. Rev. B. Condens. Matter. 1993, 48, 10221-6.

31. Delyagin, N.; Erzinkyan, A.; Parfenova, V.; Rozantsev, I.; Ryasny, G. Ferromagnetic-to-antiferromagnetic transition in (Hf1-xTix)Fe2 intermetallic compounds induced by geometrical frustration of the Fe(2a) sites. J. Magn. Magn. Mater. 2008, 320, 1853-7.

32. Sun, Y.; Cao, Y.; Hu, S.; et al. Interplanar ferromagnetism enhanced ultrawide zero thermal expansion in kagome cubic intermetallic (Zr,Nb)Fe2. J. Am. Chem. Soc. 2023, 145, 17096-102.

33. Xu, J.; Wang, Z.; Huang, H.; et al. Significant zero thermal expansion via enhanced magnetoelastic coupling in kagome magnets. Adv. Mater. 2023, 35, e2208635.

34. Diop, L. V. B.; Kastil, J.; Isnard, O.; Arnold, Z.; Kamarad, J. Collapse of ferromagnetism in itinerant-electron system: a magnetic, transport properties, and high pressure study of (Hf,Ta)Fe2 compounds. J. Appl. Phys. 2014, 116, 163907.

35. Li, L.; Tong, P.; Zou, Y.; et al. Good comprehensive performance of Laves phase Hf1-xTaxFe2 as negative thermal expansion materials. Acta. Mater. 2018, 161, 258-65.

36. Qiao, Y.; Liaquat, I.; Zhu, Y.; Guo, J.; Liang, E.; Gao, Q. Tunable thermal expansion via the magnetic phase competition in kagome magnets. Appl. Phys. Lett. 2024, 125, 032403.

37. Wang, H.; Wang, Y.; Gong, Y.; et al. Designing (Hf,Ta)Fe2-based zero thermal expansion composites consisting of multiple Laves phases. Rare. Met. 2024, 43, 6596-605.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/