REFERENCES

1. Zinkle, S.; Was, G. Materials challenges in nuclear energy. Acta. Mater. 2013, 61, 735-58.

2. Zinkle, S. J.; Busby, J. T. Structural materials for fission & fusion energy. Mater. Today. 2009, 12, 12-9.

3. Wolfer, W. G. The dislocation bias. J. Comput. Aided. Mater. Des. 2007, 14, 403-17.

4. Brailsford, A.; Bullough, R. The rate theory of swelling due to void growth in irradiated metals. J. Nucl. Mater. 1972, 44, 121-35.

5. Golubov, S. I.; Barashev, A. V.; Stoller, R. E. Comprehensive nuclear materials; 2011, pp. 357-91. Available from: www.osti.gov/biblio/1035151 [Last accessed on 11 Aug 2025].

6. Mansur, L. K. Void swelling in metals and alloys under irradiation: an assessment of the theory. Nucl. Technol. 1978, 40, 5-34.

7. Bondarenko, A. I.; Konobeev, Y. V. Void growth kinetics in irradiated metals. Phys. Stat. Sol. (a). 1976, 34, 195-205.

8. Allen, T.; Cole, J.; Gan, J.; Was, G.; Dropek, R.; Kenik, E. Swelling and radiation-induced segregation in austentic alloys. J. Nucl. Mater. 2005, 342, 90-100.

9. Barrioz, P.; Hure, J.; Tanguy, B. Void growth and coalescence in irradiated copper under deformation. J. Nucl. Mater. 2018, 502, 123-31.

10. Bhattacharya, A.; Zinkle, S. J. 1.12 - Cavity swelling in irradiated materials. In: Comprehensive Nuclear Materials. Elsevier; 2020. pp. 406-55.

11. Was, G. S. Fundamentals of radiation materials science: metals and alloys; Berlin: Springer; 2007. pp. 343-431.

12. Chang, Z.; Olsson, P.; Terentyev, D.; Sandberg, N. Dislocation bias factors in fcc copper derived from atomistic calculations. J. Nucl. Mater. 2013, 441, 357-63.

13. Dubinko, V.; Ostapchuk, P.; Slezov, V. Theory of radiation-induced and thermal coarsening of the void ensemble in metals under irradiation. J. Nucl. Mater. 1989, 161, 239-60.

14. Cawthorne, C.; Fulton, E. J. Voids in irradiated stainless steel. Nature 1967, 216, 575-6.

15. Norris, D. I. R. Voids in irradiated metals (Part I). Rad. Effects. 1972, 14, 1-37.

16. Norris, D. I. R. The growth of voids in nickel in a high-voltage electron microscope. Philos. Mag. 1971, 23, 135-52.

17. Harkness, S. D.; Li, C. A study of void formation in fast neutron-irradiated metals. Metall. Trans. 1971, 2, 1457-70.

18. Loomis, B.; Gerber, S. Effects of irradiation-temperature change on void growth and shrinkage in ion-irradiated Nb. J. Nucl. Mater. 1981, 102, 154-69.

19. Ayanoglu, M.; Motta, A. T. Void shrinkage in 21Cr32Ni austenitic model alloy during in-situ ion irradiation. J. Nucl. Mater. 2021, 543, 152636.

20. Chen, W.; Mei, Z.; Ward, L.; et al. In-situ TEM investigation of void swelling in nickel under irradiation with analysis aided by computer vision. Acta. Mater. 2023, 254, 119013.

21. Li, J.; Fan, C.; Li, Q.; Wang, H.; Zhang, X. In situ studies on irradiation resistance of nanoporous Au through temperature-jump tests. Acta. Mater. 2018, 143, 30-42.

22. Chen, Y.; Yu, K. Y.; Liu, Y.; et al. Damage-tolerant nanotwinned metals with nanovoids under radiation environments. Nat. Commun. 2015, 6, 7036.

23. Niu, T.; Nasim, M.; Annadanam, R. G. S.; et al. Recent studies on void shrinkage in metallic materials subjected to in situ heavy ion irradiations. JOM 2020, 72, 4008-16.

24. Niu, T.; Rayaprolu, S.; Shang, Z.; et al. In situ study on heavy ion irradiation induced microstructure evolution in single crystal Cu with nanovoids at elevated temperature. Mater. Today. Commun. 2022, 33, 104418.

25. Dubinko, V.; Guglya, A.; Donnelly, S. Radiation-induced formation, annealing and ordering of voids in crystals: theory and experiment. Nucl. Instrum. Meth. B. 2011, 269, 1634-9.

26. Samaras, M.; Hoffelner, W.; Victoria, M. Irradiation of pre-existing voids in nanocrystalline iron. J. Nucl. Mater. 2006, 352, 50-6.

27. Wolfer, W.; Ashkin, M. Stress-induced diffusion of point defects to voids. Scr. Metall. 1973, 7, 1175-80.

28. Borodin, V.; Ryazanov, A.; Abromeit, C. Void bias factors due to the anisotropy of the point defect diffusion. J. Nucl. Mater. 1993, 207, 242-54.

29. Carpentier, D.; Jourdan, T.; Le, Bouar. Y.; Marinica, M. Effect of saddle point anisotropy of point defects on their absorption by dislocations and cavities. Acta. Mater. 2017, 136, 323-34.

30. Wang, Y.; Gao, F.; Wirth, B. D. Atomic modeling assessment of the interaction distance and effective bias for small defect clusters absorption at a void in BCC Fe. J. Nucl. Mater. 2022, 568, 153882.

31. Yu, Z.; Xu, H. Dislocation loop bias and void swelling in irradiated α-iron from mesoscale and atomistic simulations. Commun. Mater. 2023, 4, 356.

32. Yu, Z.; Lin, Y.; Zachman, M. J.; Zinkle, S. J.; Xu, H. The role of stacking fault tetrahedra on void swelling in irradiated copper. Commun. Mater. 2024, 5, 491.

33. Surh, M. P.; Wolfer, W. G. Accurate mean field void bias factors for radiation swelling calculations. J. Comput. Aided. Mater. Des. 2007, 14, 419-24.

34. Griffiths, M.; Ramos-Nervi, J.; Greenwood, L. A rate theory model of radiation-induced swelling in an austenitic stainless steel. J. Nucl. Mater. 2021, 2, 484-515.

35. Hayward, E.; Deo, C.; Uberuaga, B. P.; Tomé, C. N. The interaction of a screw dislocation with point defects in bcc iron. Philos. Mag. 2012, 92, 2759-78.

36. Brimhall, J.; Mastel, B. Stability of voids in neutron irradiated nickel. J. Nucl. Mater. 1969, 33, 186-94.

37. Horton, L.; Bentley, J.; Farrell, K. A TEM study of neutron-irradiated iron. J. Nucl. Mater. 1982, 108-9, 222-33.

38. Singh, B.; Zinkle, S. Defect accumulation in pure fcc metals in the transient regime: a review. J. Nucl. Mater. 1993, 206, 212-29.

39. Zinkle, S.; Snead, L. Microstructure of copper and nickel irradiated with fission neutrons near 230 °C. J. Nucl. Mater. 1995, 225, 123-31.

40. Bhattacharya, A.; Meslin, E.; Henry, J.; Barbu, A.; Poissonnet, S.; Décamps, B. Effect of chromium on void swelling in ion irradiated high purity Fe-Cr alloys. Acta. Mater. 2016, 108, 241-51.

41. Borodin, V.; Volkov, A.; Ryazanov, A. The effect of bias factor variations on void nucleation in irradiated alloys. J. Nucl. Mater. 2002, 307-11, 862-5.

42. Lee, T.; Hobbs, L.; Kohse, G.; Ames, M.; Harling, O.; Grant, N. Microstructural evolution and swelling of high strength, high conductivity RS-PM copper alloys irradiated to 13.5 dpa with neutrons. J. Nucl. Mater. 1986, 141-3, 179-83.

43. Muroga, T.; Yoshida, N. Microstructure of neutron-irradiated copper alloyed with nickel and zinc. J. Nucl. Mater. 1994, 212-215, 266-9.

44. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1-19.

45. Ackland, G. J.; Mendelev, M. I.; Srolovitz, D. J.; Han, S.; Barashev, A. V. Development of an interatomic potential for phosphorus impurities in-iron. J. Phys. Condens. Matter. 2004, 16, S2629-42.

46. Mishin, Y.; Mehl, M. J.; Papaconstantopoulos, D. A.; Voter, A. F.; Kress, J. D. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B. 2001, 63, 224106.

47. Mendelev, M.; Kramer, M.; Hao, S.; Ho, K.; Wang, C. Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy. Philos. Mag. 2012, 92, 4454-69.

48. Hao, J.; Casillas-trujillo, L.; Xu, H. Using lifetime of point defects for dislocation bias in bcc Fe. Curr. Opin. Solid. State. Mater. Sci. 2022, 26, 101021.

49. Xu, H.; Osetsky, Y. N.; Stoller, R. E. Self-evolving atomistic kinetic Monte Carlo: fundamentals and applications. J. Phys. Condens. Matter. 2012, 24, 375402.

50. Mahmoud, S.; Trochet, M.; Restrepo, O. A.; Mousseau, N. Study of point defects diffusion in nickel using kinetic activation-relaxation technique. Acta. Mater. 2018, 144, 679-90.

51. Mansur, L.; Brailsford, A.; Wolfer, W. On the meaning of sink capture efficiency and sink strength for point defects. J. Nucl. Mater. 1982, 105, 36-8.

52. Heinisch†, H. L.; Singh, B. N. Kinetic Monte Carlo simulations of void lattice formation during irradiation. Philos. Mag. 2003, 83, 3661-76.

53. Heinisch, H.; Singh, B.; Golubov, S. The effects of one-dimensional glide on the reaction kinetics of interstitial clusters. J. Nucl. Mater. 2000, 283-7, 737-40.

54. Malerba, L.; Becquart, C. S.; Domain, C. Object kinetic Monte Carlo study of sink strengths. J. Nucl. Mater. 2007, 360, 159-69.

55. Zinkle, S.; Farrell, K. Void swelling and defect cluster formation in reactor-irradiated copper. J. Nucl. Mater. 1989, 168, 262-7.

56. Porollo, S.; Dvoriashin, A.; Konobeev, Y.; Garner, F. Microstructure and swelling of neutron irradiated nickel and binary nickel alloys. J. Nucl. Mater. 2013, 442, S809-12.

57. Singh, B. N.; Leffers, T.; Horsewell, A. Dislocation and void segregation in copper during neutron irradiation. Philos. Mag. A. 1986, 53, 233-42.

58. Brager, H. Effects of neutron irradiation to 63 dpa on the properties of various commercial copper alloys. J. Nucl. Mater. 1986, 141-3, 79-86.

59. Leffers, T.; Singh, B.; Buckley, S.; Manthorpe, S. Void-swelling in cold-worked copper during HVEM irradiation. J. Nucl. Mater. 1983, 118, 60-7.

60. Livak, R.; Zocco, T.; Hobbs, L. Neutron damage microstructures of high-conductivity copper alloys. J. Nucl. Mater. 1987, 144, 121-7.

61. Mukouda, I.; Shimomura, Y. Damage evolution in neutron-irradiated Cu during neutron irradiation. J. Nucl. Mater. 1999, 271-2, 230-5.

62. Singh, B. N.; Eldrup, M.; Horsewell, A.; Ehrhart, P.; Dworschak, F. On recoil energy dependent void swelling in pure copper Part I. Experimental results. Philos. Mag. A. 2000, 80, 2629-50.

63. Singh, B. N.; Eldrup, M.; Zinkle, S. J.; Golubov, S. I. On grain-size-dependent void swelling in pure copper irradiated with fission neutrons. Philos. Mag. A. 2002, 82, 1137-58.

64. Singh, B.; Horsewell, A.; Gelles, D.; Garner, F. Void swelling in copper and copper alloys irradiated with fission neutrons. J. Nucl. Mater. 1992, 191-4, 1172-6.

65. Singh, B.; Evans, J. Significant differences in defect accumulation behaviour between fcc and bcc crystals under cascade damage conditions. J. Nucl. Mater. 1995, 226, 277-85.

66. Singh, B.; Horsewell, A.; Toft, P.; Edwards, D. Temperature and dose dependencies of microstructure and hardness of neutron irradiated OFHC copper. J. Nucl. Mater. 1995, 224, 131-40.

67. Zinkle, S.; Stoller, R. Quantifying defect production in solids at finite temperatures: Thermally-activated correlated defect recombination corrections to DPA (CRC-DPA). J. Nucl. Mater. 2023, 577, 154292.

68. Barashev, A.; Golubov, S.; Osetsky, Y.; Stoller, R. Dissociation of migrating particle from trap with long-range interaction field. Philos. Mag. 2010, 90, 907-21.

69. Wakai, E.; Ezawa, T.; Imamura, J.; Takenaka, T.; Tanabe, T.; Oshima, R. Effect of solute atoms on swelling in Ni alloys and pure Ni under He+ ion irradiation. J. Nucl. Mater. 2002, 307-11, 367-73.

70. Packan, N. H.; Farrell, K.; Stiegler, J. O. Correlation of neutron and heavy-ion damage: I. The influence of dose rate and injected helium on swelling in pure nickel. J. Nucl. Mater. 1978, 78, 143-55.

71. Yoshida, N.; Akashi, Y.; Kitajima, K.; Kiritani, M. Formation of secondary defects in copper by 14 MeV neutron irradiation and their effects on microstructure evolution. J. Nucl. Mater. 1985, 133-4, 405-9.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/