REFERENCES

1. Reed, R. C. The superalloys: fundamentals and applications, 1st ed.; Cambridge University Press, New York, 2006.

2. Williams, J. C.; Starke, E. A. Progress in structural materials for aerospace systems. Acta. Mater. 2003, 51, 5775-99.

3. Osada, T.; Gu, Y.; Nagashima, N.; Yuan, Y.; Yokokawa, T.; Harada, H. Optimum microstructure combination for maximizing tensile strength in a polycrystalline superalloy with a two-phase structure. Acta. Mater. 2013, 61, 1820-9.

4. Zhang, R.; Qin, H.; Bi, Z.; et al. γ′′ variant-sensitive deformation behaviour of Inconel 718 superalloy. J. Mater. Sci. Technol. 2022, 126, 169-81.

5. Gu, Y.; Cui, C.; Yuan, Y.; et al. Research progress in a high performance cast & wrought superalloy for turbine disc applications. Acta. Metall. Sin. 2015, 51, 1191-206.

6. Tian, C.; Han, G.; Cui, C.; Sun, X. Effects of Co content on tensile properties and deformation behaviors of Ni-based disk superalloys at different temperatures. Mater. Des. 2015, 88, 123-31.

7. Gu, Y. F.; Cui, C.; Harada, H.; et al. Development of Ni-Co base alloys for high-temperature disk applications. In Superalloys 2008 (Eleventh International Symposium), Champion, PA, USA, September 14-18, 2008; Reed, R. C.; Green, K. A, Caron, P.; Gabb, T. P.; Fahrmann, M. G.; Huron, E. S., Eds.; TMS: Warrendale, PA, 2008; pp 53-61.

8. Al-hammadi, R. A.; Zhang, R.; Cui, C.; Zhou, Z.; Zhou, Y. Effects of temperature on superplastic and fracture behaviors of a Ni-Co-based superalloy. J. Alloys. Compd. 2023, 958, 170524.

9. Gu, Y.; Harada, H.; Cui, C.; Ping, D.; Sato, A.; Fujioka, J. New Ni-Co-base disk superalloys with higher strength and creep resistance. Scr. Mater. 2006, 55, 815-8.

10. Yuan, Y.; Gu, Y.; Osada, T.; Zhong, Z.; Yokokawa, T.; Harada, H. A new method to strengthen turbine disc superalloys at service temperatures. Scr. Mater. 2012, 66, 884-9.

11. Vorontsov, V. A.; Mcauliffe, T. P.; Hardy, M. C.; Dye, D.; Bantounas, I. Precipitate dissolution during deformation induced twin thickening in a CoNi-base superalloy subject to creep. Acta. Mater. 2022, 232, 117936.

12. Li, Y.; Hong, Z.; Liu, B.; Jia, X. Investigation of microstructure evolution and mechanical properties of multi-precipitation Ni-Co base superalloys. Mater. Sci. Eng. A. 2021, 801, 140333.

13. Yang, C.; Hu, R.; Wang, X.; et al. Effect of pre-tensile treatments on the mechanical properties and deformation mechanism of a novel Ni-based superalloy. Mater. Sci. Eng. A. 2023, 874, 145063.

14. Ding, R.; Zhou, Q.; Qin, H.; et al. Effect of test temperature on deformation microstructure and tensile property of a novel Ni-Co-based superalloy. Mater. Sci. Eng. A. 2024, 915, 147269.

15. Qi, D.; Fu, B.; Du, K.; et al. Temperature effects on the transition from lomer-cottrell locks to deformation twinning in a Ni-Co-based superalloy. Scr. Mater. 2016, 125, 24-8.

16. Daymond, M.; Preuss, M.; Clausen, B. Evidence of variation in slip mode in a polycrystalline nickel-base superalloy with change in temperature from neutron diffraction strain measurements. Acta. Mater. 2007, 55, 3089-102.

17. Preuss, M.; da Fonseca, J. Q.; Grant, B.; et al. The effect of γ′ particle size on the deformation mechanism in an advanced polycrystalline nickel-base superalloy. In Superalloys 2008 (Eleventh International Symposium), Champion, PA, USA, September 14-18, 2008; Reed, R. C.; Green, K. A, Caron, P.; Gabb, T. P.; Fahrmann, M. G.; Huron, E. S., Eds.; TMS: Warrendale, PA, 2008; pp 405-14.

18. Grant, B. M.; Francis, E. M.; Quinta, da. Fonseca. J.; Daymond, M. R.; Preuss, M. Deformation behaviour of an advanced nickel-based superalloy studied by neutron diffraction and electron microscopy. Acta. Mater. 2012, 60, 6829-41.

19. Jaladurgam, N. R.; Li, H.; Kelleher, J.; Persson, C.; Steuwer, A.; Colliander, M. H. Microstructure-dependent deformation behaviour of a low γ′ volume fraction Ni-base superalloy studied by in-situ neutron diffraction. Acta. Mater. 2020, 183, 182-95.

20. Goodfellow, A.; Kelleher, J.; Jones, N.; Dye, D.; Hardy, M.; Stone, H. The effect of Mo on load partitioning and microstrain evolution during compression of a series of polycrystalline Ni-Based superalloys. Acta. Mater. 2019, 176, 318-29.

21. Huang, S.; Gao, Y.; An, K.; et al. Deformation mechanisms in a precipitation-strengthened ferritic superalloy revealed by in situ neutron diffraction studies at elevated temperatures. Acta. Mater. 2015, 83, 137-48.

22. Yang, J.; Li, H.; Gao, T.; et al. Deformation behavior of nickel-based superalloys with bimodal γ′ size distribution studied by in-situ neutron diffraction combined with EVPSC modeling. J. Alloys. Compd. 2024, 977, 173382.

23. Gao, Y.; Ding, Y.; Li, H.; et al. Grain-size dependent elastic-plastic deformation behaviour of inconel 625 alloy studied by in-situ neutron diffraction. Intermetallics 2021, 138, 107340.

24. Jaladurgam, N. R.; Kabra, S.; Colliander, M. H. Macro- and micro-mechanical behaviour of a γ′ strengthened Ni-based superalloy at cryogenic temperatures. Mater. Des. 2021, 209, 109954.

25. Francis, E.; Grant, B.; Fonseca, J. Q. D.; et al. High-temperature deformation mechanisms in a polycrystalline nickel-base superalloy studied by neutron diffraction and electron microscopy. Acta. Mater. 2014, 74, 18-29.

26. Ungár, T.; Gubicza, J.; Ribárik, G.; Borbély, A. Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 2001, 34, 298-310.

27. Ribárik, G.; Ungár, T.; Gubicza, J. MWP-fit : a program for multiple whole-profile fitting of diffraction peak profiles by abinitio theoretical functions. J. Appl. Crystallogr. 2001, 34, 669-76.

28. Harjo, S.; Kawasaki, T.; Tomota, Y.; et al. Work hardening, dislocation structure, and load partitioning in lath martensite determined by in situ neutron diffraction line profile analysis. Metall. Mater. Trans. A. 2017, 48, 4080-92.

29. Akama, D.; Tsuchiyama, T.; Takaki, S. Change in dislocation characteristics with cold working in ultralow-carbon martensitic Steel. ISIJ. Int. 2016, 56, 1675-80.

30. Gubicza, J.; Máthis, K.; Nagy, P.; et al. In-situ study of the microstructure evolution during tension of a Mg-Y-Zn-Al alloy processed by rapidly solidified ribbon consolidation technique. J. Magnes. Alloys. 2024, 12, 2024-40.

31. Ying, H.; Yang, X.; He, H.; et al. Anomalous dislocation response to deformation strain in CrFeCoNiPd high-entropy alloys with nanoscale chemical fluctuations. Scr. Mater. 2024, 250, 116181.

32. Xiao, Z.; He, J.; Gu, J.; et al. Tensile properties and deformation mechanisms of a new Ni-Co base superalloy from room temperature up to 750 °C. Intermetallics 2022, 150, 107697.

33. Oishi, R.; Yonemura, M.; Nishimaki, Y.; et al. Rietveld analysis software for J-PARC. Nucl. Instrum. Methods. Phys. Res. Sect. A. 2009, 600, 94-6.

34. Coakley, J.; Dye, D. Lattice strain evolution in a high volume fraction polycrystal nickel superalloy. Scr. Mater. 2012, 67, 435-8.

35. Ungár, T.; Holden, T. M.; Jóni, B.; et al. Dislocation structure in different texture components determined by neutron diffraction line profile analysis in a highly textured Zircaloy-2 rolled plate. J. Appl. Crystallogr. 2015, 48, 409-17.

36. Ribárik, G.; Jóni, B.; Ungár, T. The convolutional multiple whole profile (CMWP) fitting method, a global optimization procedure for microstructure determination. Crystals 2020, 10, 623.

37. Blondé, R.; Jimenez-melero, E.; Zhao, L.; et al. High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels. Acta. Mater. 2012, 60, 565-77.

38. Ma, S.; Rangaswamy, P.; Majumdar, B. Microstress evolution during in situ loading of a superalloy containing high volume fraction of γ′ phase. Scr. Mater. 2003, 48, 525-30.

39. Dye, D.; Stone, H.; Reed, R. A two phase elastic-plastic self-consistent model for the accumulation of microstrains in Waspaloy. Acta. Mater. 2001, 49, 1271-83.

40. Stone, H.; Holden, T.; Reed, R. On the generation of microstrains during the plastic deformation of Waspaloy. Acta. Mater. 1999, 47, 4435-48.

41. Mcallister, D.; Lv, D.; Peterson, B.; Deutchman, H.; Wang, Y.; Mills, M. Lower temperature deformation mechanisms in a γ′′-strengthened Ni-base superalloy. Scr. Mater. 2016, 115, 108-12.

42. Jackson, M.; Reed, R. Heat treatment of UDIMET 720Li: the effect of microstructure on properties. Mater. Sci. Eng. A. 1999, 259, 85-97.

43. Ungár, T.; Dragomir, I.; Révész, Á.; Borbély, A. The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. J. Appl. Crystallogr. 1999, 32, 992-1002.

44. Borbély, A.; Ungár, T. X-ray line profiles analysis of plastically deformed metals. Comptes. Rendus. Physique. 2012, 13, 293-306.

45. Ungár, T.; Ribárik, G.; Topping, M.; et al. Characterizing dislocation loops in irradiated polycrystalline Zr alloys by X-ray line profile analysis of powder diffraction patterns with satellites. J. Appl. Crystallogr. 2021, 54, 803-21.

46. Kuhlmann-wilsdorf, D. Theory of plastic deformation: - properties of low energy dislocation structures. Mater. Sci. Eng. A. 1989, 113, 1-41.

47. Kuhlmann-wilsdorf, D. Chapter 59 the LES theory of solid plasticity. Dislocations. Solids. , 2002;11, 211-342.

48. Kumagai, M.; Akita, K.; Kuroda, M.; Harjo, S. In situ diffraction characterization on microstructure evolution in austenitic stainless steel during cyclic plastic deformation and its relation to the mechanical response. Mater. Sci. Eng. A. 2021, 820, 141582.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/