REFERENCES
1. Reed, R. C. The superalloys: fundamentals and applications, 1st ed.; Cambridge University Press, New York, 2006.
2. Williams, J. C.; Starke, E. A. Progress in structural materials for aerospace systems. Acta. Mater. 2003, 51, 5775-99.
3. Osada, T.; Gu, Y.; Nagashima, N.; Yuan, Y.; Yokokawa, T.; Harada, H. Optimum microstructure combination for maximizing tensile strength in a polycrystalline superalloy with a two-phase structure. Acta. Mater. 2013, 61, 1820-9.
4. Zhang, R.; Qin, H.; Bi, Z.; et al. γ′′ variant-sensitive deformation behaviour of Inconel 718 superalloy. J. Mater. Sci. Technol. 2022, 126, 169-81.
5. Gu, Y.; Cui, C.; Yuan, Y.; et al. Research progress in a high performance cast & wrought superalloy for turbine disc applications. Acta. Metall. Sin. 2015, 51, 1191-206.
6. Tian, C.; Han, G.; Cui, C.; Sun, X. Effects of Co content on tensile properties and deformation behaviors of Ni-based disk superalloys at different temperatures. Mater. Des. 2015, 88, 123-31.
7. Gu, Y. F.; Cui, C.; Harada, H.; et al. Development of Ni-Co base alloys for high-temperature disk applications. In Superalloys 2008 (Eleventh International Symposium), Champion, PA, USA, September 14-18, 2008; Reed, R. C.; Green, K. A, Caron, P.; Gabb, T. P.; Fahrmann, M. G.; Huron, E. S., Eds.; TMS: Warrendale, PA, 2008; pp 53-61.
8. Al-hammadi, R. A.; Zhang, R.; Cui, C.; Zhou, Z.; Zhou, Y. Effects of temperature on superplastic and fracture behaviors of a Ni-Co-based superalloy. J. Alloys. Compd. 2023, 958, 170524.
9. Gu, Y.; Harada, H.; Cui, C.; Ping, D.; Sato, A.; Fujioka, J. New Ni-Co-base disk superalloys with higher strength and creep resistance. Scr. Mater. 2006, 55, 815-8.
10. Yuan, Y.; Gu, Y.; Osada, T.; Zhong, Z.; Yokokawa, T.; Harada, H. A new method to strengthen turbine disc superalloys at service temperatures. Scr. Mater. 2012, 66, 884-9.
11. Vorontsov, V. A.; Mcauliffe, T. P.; Hardy, M. C.; Dye, D.; Bantounas, I. Precipitate dissolution during deformation induced twin thickening in a CoNi-base superalloy subject to creep. Acta. Mater. 2022, 232, 117936.
12. Li, Y.; Hong, Z.; Liu, B.; Jia, X. Investigation of microstructure evolution and mechanical properties of multi-precipitation Ni-Co base superalloys. Mater. Sci. Eng. A. 2021, 801, 140333.
13. Yang, C.; Hu, R.; Wang, X.; et al. Effect of pre-tensile treatments on the mechanical properties and deformation mechanism of a novel Ni-based superalloy. Mater. Sci. Eng. A. 2023, 874, 145063.
14. Ding, R.; Zhou, Q.; Qin, H.; et al. Effect of test temperature on deformation microstructure and tensile property of a novel Ni-Co-based superalloy. Mater. Sci. Eng. A. 2024, 915, 147269.
15. Qi, D.; Fu, B.; Du, K.; et al. Temperature effects on the transition from lomer-cottrell locks to deformation twinning in a Ni-Co-based superalloy. Scr. Mater. 2016, 125, 24-8.
16. Daymond, M.; Preuss, M.; Clausen, B. Evidence of variation in slip mode in a polycrystalline nickel-base superalloy with change in temperature from neutron diffraction strain measurements. Acta. Mater. 2007, 55, 3089-102.
17. Preuss, M.; da Fonseca, J. Q.; Grant, B.; et al. The effect of γ′ particle size on the deformation mechanism in an advanced polycrystalline nickel-base superalloy. In Superalloys 2008 (Eleventh International Symposium), Champion, PA, USA, September 14-18, 2008; Reed, R. C.; Green, K. A, Caron, P.; Gabb, T. P.; Fahrmann, M. G.; Huron, E. S., Eds.; TMS: Warrendale, PA, 2008; pp 405-14.
18. Grant, B. M.; Francis, E. M.; Quinta, da. Fonseca. J.; Daymond, M. R.; Preuss, M. Deformation behaviour of an advanced nickel-based superalloy studied by neutron diffraction and electron microscopy. Acta. Mater. 2012, 60, 6829-41.
19. Jaladurgam, N. R.; Li, H.; Kelleher, J.; Persson, C.; Steuwer, A.; Colliander, M. H. Microstructure-dependent deformation behaviour of a low γ′ volume fraction Ni-base superalloy studied by in-situ neutron diffraction. Acta. Mater. 2020, 183, 182-95.
20. Goodfellow, A.; Kelleher, J.; Jones, N.; Dye, D.; Hardy, M.; Stone, H. The effect of Mo on load partitioning and microstrain evolution during compression of a series of polycrystalline Ni-Based superalloys. Acta. Mater. 2019, 176, 318-29.
21. Huang, S.; Gao, Y.; An, K.; et al. Deformation mechanisms in a precipitation-strengthened ferritic superalloy revealed by in situ neutron diffraction studies at elevated temperatures. Acta. Mater. 2015, 83, 137-48.
22. Yang, J.; Li, H.; Gao, T.; et al. Deformation behavior of nickel-based superalloys with bimodal γ′ size distribution studied by in-situ neutron diffraction combined with EVPSC modeling. J. Alloys. Compd. 2024, 977, 173382.
23. Gao, Y.; Ding, Y.; Li, H.; et al. Grain-size dependent elastic-plastic deformation behaviour of inconel 625 alloy studied by in-situ neutron diffraction. Intermetallics 2021, 138, 107340.
24. Jaladurgam, N. R.; Kabra, S.; Colliander, M. H. Macro- and micro-mechanical behaviour of a γ′ strengthened Ni-based superalloy at cryogenic temperatures. Mater. Des. 2021, 209, 109954.
25. Francis, E.; Grant, B.; Fonseca, J. Q. D.; et al. High-temperature deformation mechanisms in a polycrystalline nickel-base superalloy studied by neutron diffraction and electron microscopy. Acta. Mater. 2014, 74, 18-29.
26. Ungár, T.; Gubicza, J.; Ribárik, G.; Borbély, A. Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 2001, 34, 298-310.
27. Ribárik, G.; Ungár, T.; Gubicza, J.
28. Harjo, S.; Kawasaki, T.; Tomota, Y.; et al. Work hardening, dislocation structure, and load partitioning in lath martensite determined by in situ neutron diffraction line profile analysis. Metall. Mater. Trans. A. 2017, 48, 4080-92.
29. Akama, D.; Tsuchiyama, T.; Takaki, S. Change in dislocation characteristics with cold working in ultralow-carbon martensitic Steel. ISIJ. Int. 2016, 56, 1675-80.
30. Gubicza, J.; Máthis, K.; Nagy, P.; et al. In-situ study of the microstructure evolution during tension of a Mg-Y-Zn-Al alloy processed by rapidly solidified ribbon consolidation technique. J. Magnes. Alloys. 2024, 12, 2024-40.
31. Ying, H.; Yang, X.; He, H.; et al. Anomalous dislocation response to deformation strain in CrFeCoNiPd high-entropy alloys with nanoscale chemical fluctuations. Scr. Mater. 2024, 250, 116181.
32. Xiao, Z.; He, J.; Gu, J.; et al. Tensile properties and deformation mechanisms of a new Ni-Co base superalloy from room temperature up to 750 °C. Intermetallics 2022, 150, 107697.
33. Oishi, R.; Yonemura, M.; Nishimaki, Y.; et al. Rietveld analysis software for J-PARC. Nucl. Instrum. Methods. Phys. Res. Sect. A. 2009, 600, 94-6.
34. Coakley, J.; Dye, D. Lattice strain evolution in a high volume fraction polycrystal nickel superalloy. Scr. Mater. 2012, 67, 435-8.
35. Ungár, T.; Holden, T. M.; Jóni, B.; et al. Dislocation structure in different texture components determined by neutron diffraction line profile analysis in a highly textured Zircaloy-2 rolled plate. J. Appl. Crystallogr. 2015, 48, 409-17.
36. Ribárik, G.; Jóni, B.; Ungár, T. The convolutional multiple whole profile (CMWP) fitting method, a global optimization procedure for microstructure determination. Crystals 2020, 10, 623.
37. Blondé, R.; Jimenez-melero, E.; Zhao, L.; et al. High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels. Acta. Mater. 2012, 60, 565-77.
38. Ma, S.; Rangaswamy, P.; Majumdar, B. Microstress evolution during in situ loading of a superalloy containing high volume fraction of γ′ phase. Scr. Mater. 2003, 48, 525-30.
39. Dye, D.; Stone, H.; Reed, R. A two phase elastic-plastic self-consistent model for the accumulation of microstrains in Waspaloy. Acta. Mater. 2001, 49, 1271-83.
40. Stone, H.; Holden, T.; Reed, R. On the generation of microstrains during the plastic deformation of Waspaloy. Acta. Mater. 1999, 47, 4435-48.
41. Mcallister, D.; Lv, D.; Peterson, B.; Deutchman, H.; Wang, Y.; Mills, M. Lower temperature deformation mechanisms in a γ′′-strengthened Ni-base superalloy. Scr. Mater. 2016, 115, 108-12.
42. Jackson, M.; Reed, R. Heat treatment of UDIMET 720Li: the effect of microstructure on properties. Mater. Sci. Eng. A. 1999, 259, 85-97.
43. Ungár, T.; Dragomir, I.; Révész, Á.; Borbély, A. The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. J. Appl. Crystallogr. 1999, 32, 992-1002.
44. Borbély, A.; Ungár, T. X-ray line profiles analysis of plastically deformed metals. Comptes. Rendus. Physique. 2012, 13, 293-306.
45. Ungár, T.; Ribárik, G.; Topping, M.; et al. Characterizing dislocation loops in irradiated polycrystalline Zr alloys by X-ray line profile analysis of powder diffraction patterns with satellites. J. Appl. Crystallogr. 2021, 54, 803-21.
46. Kuhlmann-wilsdorf, D. Theory of plastic deformation: - properties of low energy dislocation structures. Mater. Sci. Eng. A. 1989, 113, 1-41.
47. Kuhlmann-wilsdorf, D. Chapter 59 the LES theory of solid plasticity. Dislocations. Solids. , 2002;11, 211-342.