REFERENCES

1. Ohmori, Y.; Ohtani, H.; Kunitake, T. The mechanical properties of low-carbon low-alloy bainitic steels. ISIJ. Int. 1972, 12, 146-54.

2. Garcia-mateo, C.; Caballero, F. G. Ultra-high-strength bainitic steels. ISIJ. Int. 2005, 45, 1736-40.

3. Singh, S.; Bhadeshia, H. Estimation of bainite plate-thickness in low-alloy steels. Mater. Sci. Eng:. A. 1998, 245, 72-9.

4. Caballero, F. G.; Bhadeshia, H. K. D. H.; Mawella, K. J. A.; Jones, D. G.; Brown, P. Very strong low temperature bainite. Mater. Sci. Technol. 2002, 18, 279-84.

5. García-mateo, C.; Caballero, F. G. The role of retained austenite on tensile properties of steels with bainitic microstructures. Mater. Trans. 2005, 46, 1839-46.

6. Ohtani, H.; Okaguchi, S.; Fujishiro, Y.; Ohmori, Y. Morphology and properties of low-carbon bainite. Metall. Trans. A. 1990, 21, 877-88.

7. Kurdjumov, G. V.; Maksimova, O. P. Kinetics of the transformation of austenite into martensite at low temperatures. Dokl. Akad. Nauk. 1948, 61, 83-6. Available from: https://chemport-n.cas.org//chemport-n/?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1%3ACAS%3A528%3ADyaH1MXksFc%3D&md5=028fa2d6d383701e12ceaf69833079f2 (accessed on 2025-8-1).

8. Thadhani, N. N.; Meyers, M. A. Kinetics of isothermal martensitic transformation. Prog. Mater. Sci. 1986, 30, 1-37.

9. Pati, S.; Cohen, M. Nucleation of the isothermal martensitic transformation. Acta. Metallurgica. 1969, 17, 189-99.

10. Kajiwara, S. Mechanism of isothermal martensitic transformation. Mater. Trans,. JIM. 1992, 33, 1027-34.

11. Lobodyuk, V. A.; Estrin, E. I. Isothermal martensitic transformations. Phys. -Usp. 2005, 48, 713-32.

12. Hsu, T. Y.; Yexin, C.; Weiye, C. Isothermal martensite formation in an AISI 52100 ball bearing steel. Metall. Trans. A. 1987, 18, 1389-94.

13. Kim, D.; Lee, S. J.; De, Cooman. B. C. Microstructure of low C steel isothermally transformed in the Ms to Mf temperature range. Metall. Mater. Trans. A. 2012, 43, 4967-83.

14. Okamoto, H.; Oka, M. Lower bainite with midrib in hypereutectoid steels. Metall. Trans. A. 1986, 17, 1113-20.

15. Bohemen, S. M. C.; Santofimia, M. J.; Sietsma, J. Experimental evidence for bainite formation below Ms in Fe-0.66 C. Scripta. Mater. 2008, 58, 488-91.

16. Samanta, S.; Biswas, P.; Giri, S.; Singh, S. B.; Kundu, S. Formation of bainite below the MS temperature: kinetics and crystallography. Acta. Mater. 2016, 105, 390-403.

17. Navarro-López, A.; Hidalgo, J.; Sietsma, J.; Santofimia, M. J. Characterization of bainitic/martensitic structures formed in isothermal treatments below the Ms temperature. Mater. Charact. 2017, 128, 248-56.

18. Zhao, L.; Qian, L.; Zhou, Q.; et al. The combining effects of ausforming and below-Ms or above-Ms austempering on the transformation kinetics, microstructure and mechanical properties of low-carbon bainitic steel. Mater. Des. 2019, 183, 108123.

19. Ravi, A. M.; Navarro-López, A.; Sietsma, J.; Santofimia, M. J. Influence of martensite/austenite interfaces on bainite formation in low-alloy steels below Ms. Acta. Mater. 2020, 188, 394-405.

20. Navarro-lópez, A.; Hidalgo, J.; Sietsma, J.; Santofimia, M. J. Unravelling the mechanical behaviour of advanced multiphase steels isothermally obtained below M. Mater. Des. 2020, 188, 108484.

21. De-castro, D.; Rementeria, R.; Vivas, J.; et al. Examining the multi-scale complexity and the crystallographic hierarchy of isothermally treated bainitic and martensitic structures. Mater. Charact. 2020, 160, 110127.

22. Shirzadi, A. A.; Abreu, H.; Pocock, L.; Klobčuar, D.; Withers, P. J.; Bhadeshia, H. K. D. H. Bainite orientation in plastically deformed austenite. Int. J. Mater. Res. 2009, 100, 40-5.

23. Tsuzaki, K.; Fukasaku, S.; Tomota, Y.; Maki, T. Effect of prior deformation of austenite on the γ → ε; martensitic transformation in Fe-Mn alloys. Mater. Trans,. JIM. 1991, 32, 222-8.

24. Maalekian, M.; Kozeschnik, E.; Chatterjee, S.; Bhadeshia, H. K. D. H. Mechanical stabilisation of eutectoid steel. Mater. Sci. Technol. 2007, 23, 610-2.

25. Gong, W.; Tomota, Y.; Adachi, Y.; Paradowska, A. M.; Kelleher, J. F.; Zhang, S. Y. Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel. Acta. Mater. 2013, 61, 4142-54.

26. Miyamoto, G.; Iwata, N.; Takayama, N.; Furuhara, T. Quantitative analysis of variant selection in ausformed lath martensite. Acta. Mater. 2012, 60, 1139-48.

27. Uenishi, A. Development of advanced high strength sheet steel for NSafTM-AutoConcept. Nippon. Steel. Sumitomo. Met. Tech. Rep. 2019, 118, 1-6. Available from: https://www.nipponsteel.com/en/tech/report/pdf/122 (accessed on 2025-8-1).

28. Gong, W.; Tomota, Y.; Harjo, S.; Su, Y. H.; Aizawa, K. Effect of prior martensite on bainite transformation in nanobainite steel. Acta. Mater. 2015, 85, 243-9.

29. Shibata, A.; Takeda, Y.; Park, N.; et al. Nature of dynamic ferrite transformation revealed by in-situ neutron diffraction analysis during thermomechanical processing. Scripta. Mater. 2019, 165, 44-9.

30. Gong, W.; Harjo, S.; Tomota, Y.; et al. Lattice parameters of austenite and martensite during transformation for Fe-18Ni alloy investigated through in-situ neutron diffraction. Acta. Mater. 2023, 250, 118860.

31. McNaughton, W. P.; Richman, R. H.; Jaffee, R. I. “Superclean” 3.5 NiCrMoV turbine rotor steel: a status report - Part I: steelmaking practice, heat treatment, and metallurgical properties. J. Mater. Eng. 1991, 13, 9-18.

32. Harjo, S.; Ito, T.; Aizawa, K.; et al. Current status of engineering materials diffractometer at J-PARC. Mater. Sci. Forum. 2011, 681, 443-8.

33. I. Deformation-induced martensitic transformation and transformation-induced plasticity in steels. Met. Sci. 1982, 16, 245-53.

34. Oishi-Tomiyasu, R.; Yonemura, M.; Morishima, T.; et al. Application of matrix decomposition algorithms for singular matrices to the Pawley method in Z-Rietveld. J. Appl. Crystallogr. 2012, 45, 299-308.

35. Bhadeshia, H. K. D. H. The lower bainite transformation and the significance of carbide precipitation. Acta. Metall. 1982, 28, 1103-14.

36. Ohmori, Y.; Jung, Y. C.; Ueno, H.; Nakai, K.; Ohtsubo, H. Crystallographic analysis of upper bainite in Fe-9% Ni-C alloys. Mater. Trans,. JIM. 1996, 37, 1665-71.

37. Chang, L. C.; Bhadeshia, H. K. D. H. Stress-affected transformation to lower bainite. J. Mater. Sci. 1996, 31, 2145-8.

38. Bhadeshia, H. K. D. H. Bainite in Steels; Institute of Materials: London, 1992..

39. Kawata, H.; Hayashi, K.; Sugiura, N.; Yoshinaga, N.; Takahashi, M. Effect of martensite in initial structure on bainite transformation. Mater. Sci. Forum. 2010, 638-42, 3307-12.

40. Toji, Y.; Matsuda, H.; Raabe, D. Effect of Si on the acceleration of bainite transformation by pre-existing martensite. Acta. Mater. 2016, 116, 250-62.

41. Ribamar, G. G.; Escobar, J. D.; Da, Silva. A. K.; et al. Austenite carbon enrichment and decomposition during quenching and tempering of high silicon high carbon bearing steel. Acta. Mater. 2023, 247, 118742.

42. Kulin, S. A.; Speich, C. R. J. Isothermal martensite formation in an iron-chromium-nickel alloy. Metals 1952, 4, 258-63.

43. Cohen, M.; Machlin, E. S.; Paranjpe, V. G. In Thermodynamics in Physical Metallurgy; American Society for Metals: Cleveland, 1950; p 242.

44. Roitburd, A. L.; Kurdjumov, G. V. The nature of martensitic transformations. Mater. Sci. Eng. 1979, 39, 141-67.

45. Cohen, M. Martensitic nucleation-revisited. Mater. Trans,. JIM. 1992, 33, 178-83.

46. Ravi, A. M.; Sietsma, J.; Santofimia, M. J. Exploring bainite formation kinetics distinguishing grain-boundary and autocatalytic nucleation in high and low-Si steels. Acta. Mater. 2016, 105, 155-64.

47. Lin, M.; Olson, G. B.; Cohen, M. Distributed-activation kinetics of phase transformations in steel. Metall. Trans. A. 1992, 23, 2987-98.

48. S. Continuous observation of isothermal martensite formation in Fe-Ni-Mn alloys. Acta. Metall. 1984, 32, 407-13.

49. Santofimia, M. J.; Zhao, L.; Petrov, R.; Sietsma, J.; Van Der Zwaag, S. Influence of interface mobility on the evolution of austenite-martensite grain assemblies during annealing. Acta. Mater. 2009, 57, 4548-57.

50. Dai, Z.; Ding, R.; Yang, Z.; Zhang, C.; Chen, H. Elucidating the effect of Mn partitioning on interface migration and carbon partitioning during quenching and partitioning of the Fe-C-Mn-Si steels: modeling and experiments. Acta. Mater. 2018, 144, 666-78.

51. Aaronson, H. I.; Reynolds, W. T.; Purdy, G. R. The incomplete transformation phenomenon in steel. Metall. Mater. Trans. A. 2006, 37, 1731-45.

52. Kaufman, L.; Cohen, M. Thermodynamics and kinetics of martensitic transformations. Prog. Met. Phys. 1958, 7, 165-246.

53. Toji, Y.; Miyamoto, G.; Raabe, D. Carbon partitioning during quenching and partitioning heat treatment accompanied by carbide precipitation. Acta. Mater. 2015, 86, 137-47.

54. Celada-Casero, C.; Sietsma, J.; Santofimia, M. J. The role of the austenite grain size in the martensitic transformation in low carbon steels. Mater. Des. 2019, 167, 107625.

55. Mimkes, J. Calculations of dislocation pipe diffusion. J. Phys. Colloques. 1979, C6, 181-3.

56. Zorgani, M.; Garcia-Mateo, C.; Jahazi, M. Microstructural evolution during tempering of an ausformed carbide-free low temperature bainitic steel. Mater. Des. 2021, 210, 110082.

57. Bhadeshia, H. K. D. H.; David, S. A.; Vitek, J. M.; Reed, R. W. Stress induced transformation to bainite in Fe-Cr-Mo-C pressure vessel steel. Mater. Sci. Technol. 1991, 7, 686-98.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/