REFERENCES
1. Ohmori, Y.; Ohtani, H.; Kunitake, T. The mechanical properties of low-carbon low-alloy bainitic steels. ISIJ. Int. 1972, 12, 146-54.
2. Garcia-mateo, C.; Caballero, F. G. Ultra-high-strength bainitic steels. ISIJ. Int. 2005, 45, 1736-40.
3. Singh, S.; Bhadeshia, H. Estimation of bainite plate-thickness in low-alloy steels. Mater. Sci. Eng:. A. 1998, 245, 72-9.
4. Caballero, F. G.; Bhadeshia, H. K. D. H.; Mawella, K. J. A.; Jones, D. G.; Brown, P. Very strong low temperature bainite. Mater. Sci. Technol. 2002, 18, 279-84.
5. García-mateo, C.; Caballero, F. G. The role of retained austenite on tensile properties of steels with bainitic microstructures. Mater. Trans. 2005, 46, 1839-46.
6. Ohtani, H.; Okaguchi, S.; Fujishiro, Y.; Ohmori, Y. Morphology and properties of low-carbon bainite. Metall. Trans. A. 1990, 21, 877-88.
7. Kurdjumov, G. V.; Maksimova, O. P. Kinetics of the transformation of austenite into martensite at low temperatures. Dokl. Akad. Nauk. 1948, 61, 83-6. Available from: https://chemport-n.cas.org//chemport-n/?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1%3ACAS%3A528%3ADyaH1MXksFc%3D&md5=028fa2d6d383701e12ceaf69833079f2 (accessed on 2025-8-1).
8. Thadhani, N. N.; Meyers, M. A. Kinetics of isothermal martensitic transformation. Prog. Mater. Sci. 1986, 30, 1-37.
9. Pati, S.; Cohen, M. Nucleation of the isothermal martensitic transformation. Acta. Metallurgica. 1969, 17, 189-99.
10. Kajiwara, S. Mechanism of isothermal martensitic transformation. Mater. Trans,. JIM. 1992, 33, 1027-34.
11. Lobodyuk, V. A.; Estrin, E. I. Isothermal martensitic transformations. Phys. -Usp. 2005, 48, 713-32.
12. Hsu, T. Y.; Yexin, C.; Weiye, C. Isothermal martensite formation in an AISI 52100 ball bearing steel. Metall. Trans. A. 1987, 18, 1389-94.
13. Kim, D.; Lee, S. J.; De, Cooman. B. C. Microstructure of low C steel isothermally transformed in the Ms to Mf temperature range. Metall. Mater. Trans. A. 2012, 43, 4967-83.
14. Okamoto, H.; Oka, M. Lower bainite with midrib in hypereutectoid steels. Metall. Trans. A. 1986, 17, 1113-20.
15. Bohemen, S. M. C.; Santofimia, M. J.; Sietsma, J. Experimental evidence for bainite formation below Ms in Fe-0.66 C. Scripta. Mater. 2008, 58, 488-91.
16. Samanta, S.; Biswas, P.; Giri, S.; Singh, S. B.; Kundu, S. Formation of bainite below the MS temperature: kinetics and crystallography. Acta. Mater. 2016, 105, 390-403.
17. Navarro-López, A.; Hidalgo, J.; Sietsma, J.; Santofimia, M. J. Characterization of bainitic/martensitic structures formed in isothermal treatments below the Ms temperature. Mater. Charact. 2017, 128, 248-56.
18. Zhao, L.; Qian, L.; Zhou, Q.; et al. The combining effects of ausforming and below-Ms or above-Ms austempering on the transformation kinetics, microstructure and mechanical properties of low-carbon bainitic steel. Mater. Des. 2019, 183, 108123.
19. Ravi, A. M.; Navarro-López, A.; Sietsma, J.; Santofimia, M. J. Influence of martensite/austenite interfaces on bainite formation in low-alloy steels below Ms. Acta. Mater. 2020, 188, 394-405.
20. Navarro-lópez, A.; Hidalgo, J.; Sietsma, J.; Santofimia, M. J. Unravelling the mechanical behaviour of advanced multiphase steels isothermally obtained below M. Mater. Des. 2020, 188, 108484.
21. De-castro, D.; Rementeria, R.; Vivas, J.; et al. Examining the multi-scale complexity and the crystallographic hierarchy of isothermally treated bainitic and martensitic structures. Mater. Charact. 2020, 160, 110127.
22. Shirzadi, A. A.; Abreu, H.; Pocock, L.; Klobčuar, D.; Withers, P. J.; Bhadeshia, H. K. D. H. Bainite orientation in plastically deformed austenite. Int. J. Mater. Res. 2009, 100, 40-5.
23. Tsuzaki, K.; Fukasaku, S.; Tomota, Y.; Maki, T. Effect of prior deformation of austenite on the γ → ε; martensitic transformation in Fe-Mn alloys. Mater. Trans,. JIM. 1991, 32, 222-8.
24. Maalekian, M.; Kozeschnik, E.; Chatterjee, S.; Bhadeshia, H. K. D. H. Mechanical stabilisation of eutectoid steel. Mater. Sci. Technol. 2007, 23, 610-2.
25. Gong, W.; Tomota, Y.; Adachi, Y.; Paradowska, A. M.; Kelleher, J. F.; Zhang, S. Y. Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel. Acta. Mater. 2013, 61, 4142-54.
26. Miyamoto, G.; Iwata, N.; Takayama, N.; Furuhara, T. Quantitative analysis of variant selection in ausformed lath martensite. Acta. Mater. 2012, 60, 1139-48.
27. Uenishi, A. Development of advanced high strength sheet steel for NSafTM-AutoConcept. Nippon. Steel. Sumitomo. Met. Tech. Rep. 2019, 118, 1-6. Available from: https://www.nipponsteel.com/en/tech/report/pdf/122 (accessed on 2025-8-1).
28. Gong, W.; Tomota, Y.; Harjo, S.; Su, Y. H.; Aizawa, K. Effect of prior martensite on bainite transformation in nanobainite steel. Acta. Mater. 2015, 85, 243-9.
29. Shibata, A.; Takeda, Y.; Park, N.; et al. Nature of dynamic ferrite transformation revealed by in-situ neutron diffraction analysis during thermomechanical processing. Scripta. Mater. 2019, 165, 44-9.
30. Gong, W.; Harjo, S.; Tomota, Y.; et al. Lattice parameters of austenite and martensite during transformation for Fe-18Ni alloy investigated through in-situ neutron diffraction. Acta. Mater. 2023, 250, 118860.
31. McNaughton, W. P.; Richman, R. H.; Jaffee, R. I. “Superclean” 3.5 NiCrMoV turbine rotor steel: a status report - Part I: steelmaking practice, heat treatment, and metallurgical properties. J. Mater. Eng. 1991, 13, 9-18.
32. Harjo, S.; Ito, T.; Aizawa, K.; et al. Current status of engineering materials diffractometer at J-PARC. Mater. Sci. Forum. 2011, 681, 443-8.
33. I. Deformation-induced martensitic transformation and transformation-induced plasticity in steels. Met. Sci. 1982, 16, 245-53.
34. Oishi-Tomiyasu, R.; Yonemura, M.; Morishima, T.; et al. Application of matrix decomposition algorithms for singular matrices to the Pawley method in Z-Rietveld. J. Appl. Crystallogr. 2012, 45, 299-308.
35. Bhadeshia, H. K. D. H. The lower bainite transformation and the significance of carbide precipitation. Acta. Metall. 1982, 28, 1103-14.
36. Ohmori, Y.; Jung, Y. C.; Ueno, H.; Nakai, K.; Ohtsubo, H. Crystallographic analysis of upper bainite in Fe-9% Ni-C alloys. Mater. Trans,. JIM. 1996, 37, 1665-71.
37. Chang, L. C.; Bhadeshia, H. K. D. H. Stress-affected transformation to lower bainite. J. Mater. Sci. 1996, 31, 2145-8.
38. Bhadeshia, H. K. D. H.
39. Kawata, H.; Hayashi, K.; Sugiura, N.; Yoshinaga, N.; Takahashi, M. Effect of martensite in initial structure on bainite transformation. Mater. Sci. Forum. 2010, 638-42, 3307-12.
40. Toji, Y.; Matsuda, H.; Raabe, D. Effect of Si on the acceleration of bainite transformation by pre-existing martensite. Acta. Mater. 2016, 116, 250-62.
41. Ribamar, G. G.; Escobar, J. D.; Da, Silva. A. K.; et al. Austenite carbon enrichment and decomposition during quenching and tempering of high silicon high carbon bearing steel. Acta. Mater. 2023, 247, 118742.
42. Kulin, S. A.; Speich, C. R. J. Isothermal martensite formation in an iron-chromium-nickel alloy. Metals 1952, 4, 258-63.
43. Cohen, M.; Machlin, E. S.; Paranjpe, V. G. In Thermodynamics in Physical Metallurgy; American Society for Metals: Cleveland, 1950; p 242.
44. Roitburd, A. L.; Kurdjumov, G. V. The nature of martensitic transformations. Mater. Sci. Eng. 1979, 39, 141-67.
46. Ravi, A. M.; Sietsma, J.; Santofimia, M. J. Exploring bainite formation kinetics distinguishing grain-boundary and autocatalytic nucleation in high and low-Si steels. Acta. Mater. 2016, 105, 155-64.
47. Lin, M.; Olson, G. B.; Cohen, M. Distributed-activation kinetics of phase transformations in steel. Metall. Trans. A. 1992, 23, 2987-98.
48. S. Continuous observation of isothermal martensite formation in Fe-Ni-Mn alloys. Acta. Metall. 1984, 32, 407-13.
49. Santofimia, M. J.; Zhao, L.; Petrov, R.; Sietsma, J.; Van Der Zwaag, S. Influence of interface mobility on the evolution of austenite-martensite grain assemblies during annealing. Acta. Mater. 2009, 57, 4548-57.
50. Dai, Z.; Ding, R.; Yang, Z.; Zhang, C.; Chen, H. Elucidating the effect of Mn partitioning on interface migration and carbon partitioning during quenching and partitioning of the Fe-C-Mn-Si steels: modeling and experiments. Acta. Mater. 2018, 144, 666-78.
51. Aaronson, H. I.; Reynolds, W. T.; Purdy, G. R. The incomplete transformation phenomenon in steel. Metall. Mater. Trans. A. 2006, 37, 1731-45.
52. Kaufman, L.; Cohen, M. Thermodynamics and kinetics of martensitic transformations. Prog. Met. Phys. 1958, 7, 165-246.
53. Toji, Y.; Miyamoto, G.; Raabe, D. Carbon partitioning during quenching and partitioning heat treatment accompanied by carbide precipitation. Acta. Mater. 2015, 86, 137-47.
54. Celada-Casero, C.; Sietsma, J.; Santofimia, M. J. The role of the austenite grain size in the martensitic transformation in low carbon steels. Mater. Des. 2019, 167, 107625.
56. Zorgani, M.; Garcia-Mateo, C.; Jahazi, M. Microstructural evolution during tempering of an ausformed carbide-free low temperature bainitic steel. Mater. Des. 2021, 210, 110082.