REFERENCES
1. Chen, J.; Zhou, Y.; Huang, X.; et al. Ladderphane copolymers for high-temperature capacitive energy storage. Nature 2023, 615, 62-6.
2. Kim, J.; Saremi, S.; Acharya, M.; et al. Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science 2020, 369, 81-4.
3. Yang, B.; Zhang, Q.; Huang, H.; et al. Engineering relaxors by entropy for high energy storage performance. Nat. Energy. 2023, 8, 956-64.
4. Johnson, R.; Evans, J.; Jacobsen, P.; Thompson, J.; Christopher, M. The changing automotive environment: high-temperature electronics. IEEE. Trans. Electron. Packag. Manufact. 2004, 27, 164-76.
5. Weimer, J. A.; Electrical, power. technology. for. the. more. electric. aircraft. In AIAA/IEEE Digital Avionics Systems Conference, Proceedings of AIAA/IEEE Digital Avionics Systems Conference, Fort Worth, TX, USA, October 25-28; IEEE Publishers: Piscataway, New Jersey, USA, 1993; pp 445-450.
6. Wu, C.; Deshmukh, A. A.; Li, Z.; et al. Flexible temperature-invariant polymer dielectrics with large bandgap. Adv Mater 2020;32:e2000499.[DOI:10.1002/adma.202000499] Caution!.
7. Global Power Capacitor Markets in 2020: Expect Slow and Steady Market Growth. Available from: https://www.tti.com/content/ttiinc/en/resources/marketeye/categories/passives/me-zogbi-20200309.html [accessed on 29 May 2025].
8. Li, Q.; Chen, L.; Gadinski, M. R.; et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015, 523, 576-9.
9. Li, H.; Zhou, Y.; Liu, Y.; Li, L.; Liu, Y.; Wang, Q. Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 2021, 50, 6369-400.
10. Li, S.; Dong, J.; Niu, Y.; et al. Enhanced high-temperature energy storage properties of polymer composites by interlayered metal nanodots. J. Mater. Chem. A. 2022, 10, 18773-81.
11. Yuan, C.; Zhou, Y.; Zhu, Y.; et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 2020, 11, 3919.
12. Wei, R.; Zhan, C.; Yang, Y.; He, P.; Liu, X. Polyarylene ether nitrile and titanium dioxide hybrids as thermal resistant dielectrics. Chin. J. Polym. Sci. 2021, 39, 211-8.
13. You, Y.; Liu, S.; Tu, L.; et al. Controllable fabrication of poly(arylene ether nitrile) dielectrics for thermal-resistant film capacitors. Macromolecules 2019, 52, 5850-9.
14. Zhang, T.; Chen, X.; Thakur, Y.; et al. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Sci. Adv. 2020, 6, eaax6622.
15. Huan, T. D.; Boggs, S.; Teyssedre, G.; et al. Advanced polymeric dielectrics for high energy density applications. Prog. Mater. Sci. 2016, 83, 236-69.
16. Kim, M. P.; Um, D. S.; Shin, Y. E.; Ko, H. High-performance triboelectric devices via dielectric polarization: a review. Nanoscale. Res. Lett. 2021, 16, 35.
17. Nan, C.; Shen, Y.; Ma, J. Physical properties of composites near percolation. Annu. Rev. Mater. Res. 2010, 40, 131-51.
18. Fan, B.; Zhou, M.; Zhang, C.; He, D.; Bai, J. Polymer-based materials for achieving high energy density film capacitors. Prog. Polym. Sci. 2019, 97, 101143.
19. Dong, J.; Deng, X.; Niu, Y.; Pan, Z.; Wang, H. Research progress of polymer based dielectrics for high-temperature capacitor energy storage. Acta. Phys. Sin. 2020, 69, 217701.
20. Qiu, J.; Gu, Q.; Sha, Y.; Huang, Y.; Zhang, M.; Luo, Z. Preparation and application of dielectric polymers with high permittivity and low energy loss: a mini review. J. Appl. Polym. Sci. 2022, 139, 52367.
21. O’Hara, A.; Balke, N.; Pantelides, S. T. Unique features of polarization in ferroelectric ionic conductors. Adv. Elect. Mater. 2022, 8, 2100810.
22. Dakin, T. Conduction and polarization mechanisms and trends in dielectric. IEEE. Electr. Insul. Mag. 2006, 22, 11-28.
23. Huang, S.; Liu, K.; Zhang, W.; et al. All-organic polymer dielectric materials for advanced dielectric capacitors: theory, property, modified design and future prospects. Polym. Rev. 2023, 63, 515-73.
24. Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 2016, 116, 4260-317.
25. Baldwin, A. F.; Ma, R.; Huan, T. D.; Cao, Y.; Ramprasad, R.; Sotzing, G. A. Effect of incorporating aromatic and chiral groups on the dielectric properties of poly(dimethyltin esters). Macromol. Rapid. Commun. 2014, 35, 2082-8.
26. Chen, Y.; Du, Y. K.; Yue, Y. C.; et al. Correlation between energy storage density and differential dielectric constant in ferroelectrics. J. Elec. Materi. 2020, 49, 659-67.
27. Wei, J.; Zhu, L. Intrinsic polymer dielectrics for high energy density and low loss electric energy storage. Prog. Polym. Sci. 2020, 106, 101254.
28. Chen, J.; Pei, Z.; Chai, B.; et al. Engineering the dielectric constants of polymers: from molecular to mesoscopic scales. Adv. Mater. 2024, 36, e2308670.
29. Kao, K. C.; Dielectric, Phenomena. in. Solids.; 1st, ed.; San Diego: Academic Press. 2004, p573.
30. Mannodi-kanakkithodi, A.; Huan, T. D.; Ramprasad, R. Mining materials design rules from data: the example of polymer dielectrics. Chem. Mater. 2017, 29, 9001-10.
31. Rui, G.; Allahyarov, E.; Thomas, J. J.; Taylor, P. L.; Zhu, L. Temperature-dependent rotational dipole mobility and devitrification of the rigid amorphous fraction in unpoled and poled biaxially oriented poly(vinylidene fluoride). Macromolecules 2022, 55, 9705-14.
32. Zhu, Y.; Zhang, Z.; Litt, M. H.; Zhu, L. High dielectric constant sulfonyl-containing dipolar glass polymers with enhanced orientational polarization. Macromolecules 2018, 51, 6257-66.
33. Zapsas, G.; Patil, Y.; Gnanou, Y.; Ameduri, B.; Hadjichristidis, N. Poly(vinylidene fluoride)-based complex macromolecular architectures: from synthesis to properties and applications. Prog. Polym. Sci. 2020, 104, 101231.
34. Rui, G.; Huang, Y.; Chen, X.; et al. Giant spontaneous polarization for enhanced ferroelectric properties of biaxially oriented poly(vinylidene fluoride) by mobile oriented amorphous fractions. J. Mater. Chem. C. 2021, 9, 894-907.
35. Zhang, G.; Li, Y.; Tang, S.; Thompson, R. D.; Zhu, L. The role of field electron emission in polypropylene/aluminum nanodielectrics under high electric fields. ACS. Appl. Mater. Interfaces. 2017, 9, 10106-19.
36. Hardy, C. G.; Islam, M. S.; Gonzalez-delozier, D.; et al. Converting an electrical insulator into a dielectric capacitor: end-capping polystyrene with oligoaniline. Chem. Mater. 2013, 25, 799-807.
37. Yang, M.; Guo, M.; Xu, E.; et al. Polymer nanocomposite dielectrics for capacitive energy storage. Nat. Nanotechnol. 2024, 19, 588-603.
38. Collins, J.; Gourdin, G.; Foster, M.; Qu, D. Carbon surface functionalities and SEI formation during Li intercalation. Carbon 2015, 92, 193-244.
39. Jian, G.; Jiao, Y.; Feng, L.; et al. High energy density of BaTiO3@TiO2 nanosheet/polymer composites via ping-pong-like electron area scattering and interface engineering. NPG. Asia. Mater. 2022, 14, 356.
40. Luo, D.; Wang, W.; Feng, W.; Liu, S.; He, B.; Liu, Y. Achieving high energy density and efficiency concurrently in BNNS/P(VDF-HFP) composites via synchronous heating and stirring treatment. J. Energy. Storage. 2024, 82, 110553.
41. Zhu, T.; Zhao, H.; Zhang, N.; Zhang, C.; Bai, J. Tuning the MOF-derived Fe fillers and crystal structure of PVDF composites for enhancement of their energy storage density. Chem. Eng. J. 2024, 482, 149204.
42. Mukherjee, A.; Dasgupta, Ghosh. B.; Roy, S.; Lim, Goh. K. Ultra strong flexible Ba0.7Sr0.3Zr0.02Ti0.98O3/MWCNT/PVDF Nanocomposites: Pioneering material with remarkable energy storage for self-powered devices. Chem. Eng. J. 2024, 488, 151014.
43. Liu, Y.; Tang, B.; Wang, Z.; et al. Enhanced dielectric performances of strontium barium titanate nanorod composites via improved interfacial compatibility. J. Colloid. Interface. Sci. 2025, 680, 85-95.
44. Chen, J.; Zhang, X.; Wang, Z.; Chen, W.; Yuan, Q.; Wang, Y. Laminated ferroelectric polymer composites exhibit synchronous ultrahigh discharge efficiency and energy density via utilizing multiple-interface barriers. J. Mater. Chem. A. 2022, 10, 20402-13.
45. Guo, R.; Luo, H.; Zhai, D.; et al. Bilayer structured PVDF-based composites via integrating BaTiO3 nanowire arrays and BN nanosheets for high energy density capacitors. Chem. Eng. J. 2022, 437, 135497.
46. Sun, L.; Shi, Z.; Liang, L.; et al. Concurrently achieving high discharged energy density and efficiency in composites by introducing ultralow loadings of core-shell structured graphene@TiO2 nanoboxes. ACS. Appl. Mater. Interfaces. 2022, 14, 29292-301.
47. Zheng, Y.; Dai, Z.; Liu, C.; et al. High energy storage properties for dielectric composite by asymmetric three-layer films design. J. Energy. Storage. 2024, 93, 112387.
48. Li, W.; Liang, R.; Yang, L.; et al. Novel plum pudding structured BaTiO3@ZIF-67 filler design for high-performance dielectric polymer composites. J. Energy. Storage. 2024, 91, 112010.
49. Gao, L.; Zhang, J.; Song, L.; Bai, X.; Yu, C. Low-content core-shell-structured TiO2 nanobelts@SiO2 doped with poly(vinylidene fluoride) composites to achieve high-energy storage density. J. Mater. Sci:. Mater. Electron. 2022, 33, 18345-55.
50. Chen, J.; Huang, F.; Zhang, C.; Meng, F.; Cao, L.; Lin, H. Enhanced energy storage density in poly(vinylidene fluoride-hexafluoropropylene) nanocomposites by filling with core-shell structured BaTiO3@MgO nanoparticals. J. Energy. Storage. 2022, 53, 105163.
51. Zhao, D.; Cai, Q.; Zhu, X.; et al. Multilayer dielectric nanocomposites with cross-linked dielectric transition interlayers for high-temperature applications. ACS. Appl. Mater. Interfaces. 2022, 14, 42531-40.
52. Yu, X.; Yang, R.; Zhang, W.; et al. Interface engineering of polymer composite films for high-temperature capacitive energy storage. Chem. Eng. J. 2024, 496, 154056.
53. Xie, H.; Luo, H.; Pei, Z.; Chen, S.; Zhang, D. Improved discharge energy density and efficiency of polypropylene-based dielectric nanocomposites utilizing BaTiO3@TiO2 nanoparticles. Mater. Today. Energy. 2022, 30, 101160.
54. Zhang, F.; Wang, G.; Lin, N.; et al. Synergistic promotion of inter-particle and intra-particle polarizations in BST@TiO2/PVDF nanocomposites towards elevated dielectric properties. Compos. Sci. Technol. 2024, 251, 110547.
55. Ding, C.; Tang, X.; Yu, S.; et al. Concurrently enhanced dielectric properties and energy density in poly(vinylidene fluoride)-based core-shell BaTiO3 nanocomposites via constructing a polar and rigid polymer interfacial layer. J. Mater. Chem. C. 2022, 10, 6323-33.
56. Wang, P.; Guo, Z.; Sun, Z.; Li, G.; Bi, J.; Qian, L. Carrier gradient core-double shell structure with heterojunction transition layer for significantly enhancing dielectric properties. Chem. Eng. J. 2024, 496, 153968.
57. Jing, L.; Li, W.; Gao, C.; Li, M.; Fei, W. Achieving high energy storage performance in BiFeO3@TiO2 filled PVDF-based composites with opposite double heterojunction via electric field tailoring. Chem. Eng. J. 2022, 450, 138143.
58. Xu, H.; Xie, C.; Gou, B.; Wang, R.; Zhou, J.; Li, L. Core-double-shell structured BT@TiO2@PDA and oriented BNNSs doped epoxy nanocomposites with field-dependent nonlinear electrical properties and enhancing breakdown strength. Compos. Sci. Technol. 2022, 230, 109777.
59. Li, X.; Wang, Y.; Rao, Y.; Ma, X.; Yang, Y.; Zhang, J. Enhanced energy storage in PVDF-based nanocomposite capacitors through (00l)-oriented BaTiO3 single-crystal platelets. ACS. Appl. Mater. Interfaces. 2024, 16, 27785-93.
60. Wang, T.; Deng, Y.; Sun, H.; Wang, D.; Zhang, M. Enhancing energy storage performance of PVDF-based composites through semiconducting AZO-BT heterostructure. J. Energy. Storage. 2024, 82, 110541.
61. Wang, F.; Luo, H.; Zhai, D.; et al. Dielectric nanocomposites with high energy density by doping core-double shell structured fillers. Compos. Part. A:. Appl. Sci. Manuf. 2022, 159, 107019.
62. Zhang, Z.; Zhou, L.; Wang, L.; Hao, Q.; Hua, X.; Wei, R. Enhancing energy storage density of poly(arylene ether nitrile) via incorporating modified barium titanate nanorods and hot-stretching. Nano. Res. 2024, 17, 7574-84.
63. Sun, X.; Zheng, Y.; Liu, K.; et al. Gradient core-shell structure enabling high energy storage performances in PVDF-based copolymers. J. Mater. Chem. A. 2024, 12, 8216-25.
64. Chen, C.; Wang, S.; Gong, Z.; et al. Stable dielectric properties at high-temperature of Al2O3-PESU composite for energy storage application. Compos. Part. A:. Appl. Sci. Manuf. 2024, 181, 108109.
65. Meng, G.; She, J.; Wang, C.; Wang, W.; Pan, C.; Cheng, Y. Sandwich-structured h-BN/PVDF/h-BN film with high dielectric strength and energy storage density. Front. Chem. 2022, 10, 910305.
66. Shang, Y.; Feng, Y.; Meng, Z.; Zhang, C.; Zhang, T.; Chi, Q. Achieving synergistic improvement in dielectric and energy storage properties at high-temperature of all-organic composites via physical electrostatic effect. Mater. Horiz. 2024, 11, 1528-38.
67. Yang, T.; Wang, C.; Liu, L.; Zhang, L. Silicone elastomer dielectric composites by introducing novel O-MMT@TiO2 nanoparticles for energy harvesting application. Composites. Part. A:. Appl. Sci. Manuf. 2024, 185, 108351.
68. Ma, J.; Zhang, Y.; Miao, L.; Zhang, L.; Zhang, S.; Jiang, X. Combining covalent bonding interface among different components and controlled orientation of one-dimensional nanofibers for high energy density nanocomposites. Compos. Part. B:. Eng. 2022, 243, 110134.
69. Zuo, B.; Zhou, H.; Davis, M. J. B.; Wang, X.; Priestley, R. D. Effect of local chain conformation in adsorbed nanolayers on confined polymer molecular mobility. Phys. Rev. Lett. 2019, 122, 217801.
70. Papon, A.; Montes, H.; Hanafi, M.; Lequeux, F.; Guy, L.; Saalwächter, K. Glass-transition temperature gradient in nanocomposites: evidence from nuclear magnetic resonance and differential scanning calorimetry. Phys. Rev. Lett. 2012, 108, 065702.
71. Ediger, M. D.; Forrest, J. A. Dynamics near free surfaces and the glass transition in thin polymer films: a view to the future. Macromolecules 2014, 47, 471-8.
72. Rittigstein, P.; Priestley, R. D.; Broadbelt, L. J.; Torkelson, J. M. Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat. Mater. 2007, 6, 278-82.
73. Wan, B.; Dong, X.; Yang, X.; et al. Rising of dynamic polyimide materials: a versatile dielectric for electrical and electronic applications. Adv. Mater. 2023, 35, e2301185.
74. Ho, J. S.; Greenbaum, S. G. Polymer capacitor dielectrics for high temperature applications. ACS. Appl. Mater. Interfaces. 2018, 10, 29189-218.
75. Qiao, Y.; Yin, X.; Zhu, T.; Li, H.; Tang, C. Dielectric polymers with novel chemistry, compositions and architectures. Prog. Polym. Sci. 2018, 80, 153-62.
76. Deshmukh, A. A.; Wu, C.; Yassin, O.; et al. Flexible polyolefin dielectric by strategic design of organic modules for harsh condition electrification. Energy. Environ. Sci. 2022, 15, 1307-14.
77. Wang, R.; Zhu, Y.; Fu, J.; et al. Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage. Nat. Commun. 2023, 14, 2406.
78. Zhu, T.; Zhao, H.; Zhang, N.; et al. Ultrahigh energy storage density in poly(vinylidene fluoride)-based composite dielectrics via constructing the electric potential well. Adv. Energy. Mater. 2023, 13, 2203587.
79. Yu, S.; Liu, Y.; Ding, C.; et al. All-organic sandwich structured polymer dielectrics with polyimide and PVDF for high temperature capacitor application. J. Energy. Storage. 2023, 62, 106868.
80. Bao, Z.; Du, X.; Ding, S.; et al. Improved working temperature and capacitive energy density of biaxially oriented polypropylene films with alumina coating layers. ACS. Appl. Energy. Mater. 2022, 5, 3119-28.
81. Ping, J. B.; Feng, Q. K.; Zhang, Y. X.; et al. A bilayer high-temperature dielectric film with superior breakdown strength and energy storage density. Nanomicro. Lett. 2023, 15, 154.
82. Zha, J.; Xiao, M.; Wan, B.; Wang, X.; Dang, Z.; Chen, G. Polymer dielectrics for high-temperature energy storage: Constructing carrier traps. Prog. Mater. Sci. 2023, 140, 101208.
83. Li, X.; Liu, B.; Wang, J.; et al. High-temperature capacitive energy storage in polymer nanocomposites through nanoconfinement. Nat. Commun. 2024, 15, 6655.
84. Guo, M.; Jiang, J.; Shen, Z.; Lin, Y.; Nan, C.; Shen, Y. High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency. Mater. Today. 2019, 29, 49-67.
85. Li, X.; He, S.; Jiang, Y.; et al. Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites. Nat. Commun. 2023, 14, 5707.
86. Zhou, Y.; Wang, Q. Advanced polymer dielectrics for high temperature capacitive energy storage. J. Appl. Phys. 2020, 127, 240902.
87. Vanherck, K.; Koeckelberghs, G.; Vankelecom, I. F. Crosslinking polyimides for membrane applications: a review. Prog. Polym. Sci. 2013, 38, 874-96.
88. Zhou, Y.; Li, Q.; Dang, B.; et al. A Scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures. Adv. Mater. 2018, 30, e1805672.
89. Venkat, N.; Dang, T. D.; Bai, Z.; et al. High temperature polymer film dielectrics for aerospace power conditioning capacitor applications. Mater. Sci. Eng:. B. 2010, 168, 16-21.
90. Feng, Y.; Zhou, Y.; Zhang, T.; et al. Ultrahigh discharge efficiency and excellent energy density in oriented core-shell nanofiber-polyetherimide composites. Energy. Storage. Mater. 2020, 25, 180-92.
91. Zou, K.; Dan, Y.; Yu, Y.; et al. Flexible dielectric nanocomposites with simultaneously large discharge energy density and high energy efficiency utilizing (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric nanoparticles as fillers. J. Mater. Chem. A. 2019, 7, 13473-82.
92. Wang, S.; Huang, X.; Wang, G.; Wang, Y.; He, J.; Jiang, P. Increasing the energy efficiency and breakdown strength of high-energy-density polymer nanocomposites by engineering the Ba0.7Sr0.3TiO3 nanowire surface via reversible addition-fragmentation chain transfer polymerization. J. Phys. Chem. C. 2015, 119, 25307-18.
93. Huang, X.; Jiang, P. Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 2015, 27, 546-54.
94. Yu, K.; Wang, H.; Zhou, Y.; Bai, Y.; Niu, Y. Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications. J. Appl. Phys. 2013, 113, 034105.
95. Hu, P.; Sun, W.; Fan, M.; et al. Large energy density at high-temperature and excellent thermal stability in polyimide nanocomposite contained with small loading of BaTiO3 nanofibers. Appl. Surf. Sci. 2018, 458, 743-50.
96. Sun, W.; Lu, X.; Jiang, J.; et al. Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures. J. Appl. Phys. 2017, 121, 244101.
97. Shen, Z.; Wang, J.; Jiang, J.; et al. Phase-field model of electrothermal breakdown in flexible high-temperature nanocomposites under extreme conditions. Adv. Energy. Mater. 2018, 8, 1800509.
98. Wang, P.; Guo, Y.; Zhou, D.; et al. High-temperature flexible nanocomposites with ultra-high energy storage density by nanostructured MgO fillers. Adv. Funct. Mater. 2022, 32, 2204155.
99. Zhu, Y.; Zhu, Y.; Huang, X.; et al. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv. Energy. Mater. 2019, 9, 1903062.
100. Li, H.; Ai, D.; Ren, L.; et al. Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv. Mater. 2019, 31, e1900875.
101. Ai, D.; Li, H.; Zhou, Y.; et al. Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage. Adv. Energy. Mater. 2020, 10, 1903881.
102. Liu, F.; Li, Q.; Li, Z.; et al. Poly(methyl methacrylate)/boron nitride nanocomposites with enhanced energy density as high temperature dielectrics. Composites. Science. and. Technology. 2017, 142, 139-44.
103. Li, X.; Luo, H.; Zhai, D.; et al. Enhanced capacitive energy storage of polyetherimide at high temperatures by integration of electrical insulation and thermal conductivity. Adv. Powder. Mater. 2025, 4, 100286.
104. Thakur, Y.; Zhang, T.; Iacob, C.; et al. Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers. Nanoscale 2017, 9, 10992-7.
105. Yang, M.; Li, H.; Wang, J.; et al. Roll-to-roll fabricated polymer composites filled with subnanosheets exhibiting high energy density and cyclic stability at 200 °C. Nat. Energy. 2024, 9, 143-53.
107. Thakur, Y.; Lean, M. H.; Zhang, Q. M. Reducing conduction losses in high energy density polymer using nanocomposites. Appl. Phys. Lett. 2017, 110, 122905.
108. Liu, J.; Shen, Z.; Xu, W.; et al. Interface-strengthened polymer nanocomposites with reduced dielectric relaxation exhibit high energy density at elevated temperatures utilizing a facile dual crosslinked network. Small 2020, 16, e2000714.
109. Xu, W.; Liu, J.; Chen, T.; et al. Bioinspired polymer nanocomposites exhibit giant energy density and high efficiency at high temperature. Small 2019, 15, e1901582.
110. Wang, Z.; Zhao, Y.; Yang, M.; et al. Surface strengthening of polymer composite dielectrics for superior high-temperature capacitive energy storage. Adv. Energy. Mater. 2025, 15, 2405411.
111. Bonardd, S.; Moreno-Serna, V.; Kortaberria, G.; Díaz, Díaz. D.; Leiva, A.; Saldías, C. Dipolar glass polymers containing polarizable groups as dielectric materials for energy storage applications. A minireview. Polymers. (Basel). 2019, 11, 317.
112. Zhuang, Y.; Seong, J. G.; Lee, Y. M. Polyimides containing aliphatic/alicyclic segments in the main chains. Prog. Polym. Sci. 2019, 92, 35-88.
113. Ding, S.; Bao, Z.; Wang, Y.; et al. Excellent high-temperature dielectric energy storage of flexible all-organic polyetherimide/poly(arylene ether urea) polymer blend films. J. Power. Sources. 2023, 570, 233053.
114. Zhang, Q.; Chen, X.; Zhang, B.; et al. High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends. Matter 2021, 4, 2448-59.
115. Feng, Q.; Liu, D.; Zhang, Y.; et al. Significantly improved high-temperature charge-discharge efficiency of all-organic polyimide composites by suppressing space charges. Nano. Energy. 2022, 99, 107410.
116. Zhang, T.; Shi, B.; Zhang, S.; et al. Nanoscale phase separation achieved through trace PVDF/PEI blending enhances mechanical and energy storage performance at high temperatures. J. Power. Sources. 2024, 620, 235255.
117. Xing, K.; Hao, Y.; Wang, X. J.; et al. Enhanced energy storage performance of nano-submicron structural dielectric films by suppressed ferroelectric phase aggregation. Nat. Commun. 2025, 16, 2006.
118. Yang, M.; Yuan, F.; Shi, W.; et al. Sub-nanowires boost superior capacitive energy storage performance of polymer composites at high temperatures. Adv. Funct. Mater. 2023, 33, 2214100.
119. Yang, M.; Ren, W.; Jin, Z.; Xu, E.; Shen, Y. Enhanced high-temperature energy storage performances in polymer dielectrics by synergistically optimizing band-gap and polarization of dipolar glass. Nat. Commun. 2024, 15, 8647.
120. Sun, S.; Shi, Z.; Sun, L.; et al. Achieving concurrent high energy density and efficiency in all-polymer layered paraelectric/ferroelectric composites via introducing a moderate layer. ACS. Appl. Mater. Interfaces. 2021, 13, 27522-32.
121. Wang, J.; Xie, Y.; Zhang, Y.; et al. The ultrahigh discharge efficiency and energy density of P(VDF-HFP) via electrospinning-hot press with St-MMA copolymer. Mater. Chem. Front. 2021, 5, 3646-56.
122. Liu, X. J.; Zhong, S. L.; Zheng, M. S.; Dang, Z. M.; Chen, G.; Zha, J. W. Enhanced high-temperature capacitive performance of a bilayer-structured composite film employing a charge blocking layer. ACS. Appl. Mater. Interfaces. 2023, 15, 1105-14.
123. Guo, Y.; Zhao, W.; Li, D.; et al. Ultra-high capacitive energy storage density at 150 °C achieved in polyetherimide composite films by filler and structure design. Adv. Mater. 2025, 37, e2415652.
124. Zhang, D.; Li, Y.; Li, Y.; et al. Synergistically enhanced dielectric, insulating and thermally conductive performances of sandwich PMMA based dielectric films. Prog. Nat. Sci:. Mater. Int. 2024, 34, 591-7.
125. Zhou, C.; Xu, W.; Zhang, Y.; et al. Hydrogen bonding of aramid boosts high-temperature capacitive properties of polyetherimide blends. ACS. Appl. Mater. Interfaces. 2023, 15, 8471-9.
126. Niu, Y.; Dong, J.; He, Y.; et al. Significantly enhancing the discharge efficiency of sandwich-structured polymer dielectrics at elevated temperature by building carrier blocking interface. Nano. Energy. 2022, 97, 107215.
127. Sun, L.; Zhang, F.; Li, L.; et al. Superior capacitive energy storage enabled by molecularly interpenetrating interfaces in layered polymers. Adv. Mater. 2025, 37, e2412561.
128. Chen, C. P.; Cheng, C. Y.; Zou, H.; et al. Evaluation of cost-effectiveness of peginterferon plus ribavirin for chronic hepatitis C treatment and direct-acting antiviral agents among HIV-infected patients in the prison and community settings. J. Microbiol. Immunol. Infect. 2019, 52, 556-62.
129. Shen, Z.; Liu, H.; Shen, Y.; Hu, J.; Chen, L.; Nan, C. Machine learning in energy storage materials. InterdiscMat 2022, 1, 175-95.
130. Bera, S.; Singh, M.; Thantirige, R.; et al. 2D-nanofiller-based polymer nanocomposites for capacitive energy storage applications. Small. Sci. 2023, 3, 2300016.
131. Zhang, T.; Wu, X.; Luo, T. Polymer nanofibers with outstanding thermal conductivity and thermal stability: fundamental linkage between molecular characteristics and macroscopic thermal properties. J. Phys. Chem. C. 2014, 118, 21148-59.
132. Shen, Z. H.; Wang, J. J.; Lin, Y.; Nan, C. W.; Chen, L. Q.; Shen, Y. High-throughput phase-field design of high-energy-density polymer nanocomposites. Adv. Mater. 2018, 30, 1704380.
133. Wang, C.; Pilania, G.; Boggs, S.; Kumar, S.; Breneman, C.; Ramprasad, R. Computational strategies for polymer dielectrics design. Polymer 2014, 55, 979-88.
134. Roy, S. L.; Teyssedre, G.; Laurent, C.; Montanari, G. C.; Palmieri, F. Description of charge transport in polyethylene using a fluid model with a constant mobility: fitting model and experiments. J. Phys. D:. Appl. Phys. 2006, 39, 1427-36.
135. Chen, J.; Gao, Y.; Zhu, M.; Li, J.; Yu, Q. Space charge dynamics in double-layered insulation cable under polarity reversal voltage. IEEE. Trans. Dielect. Electr. Insul. 2020, 27, 622-30.
136. Rong, Q.; Wei, H.; Huang, X.; Bao, H. Predicting the effective thermal conductivity of composites from cross sections images using deep learning methods. Compos. Sci. Technol. 2019, 184, 107861.
137. Li, S.; Xie, D.; Lei, Q. Understanding insulation failure of nanodielectrics: tailoring carrier energy. High. Voltage. 2020, 5, 643-9.
138. Huang, Y.; Zhao, H.; Wang, Y.; et al. Predicting the breakdown strength and lifetime of nanocomposites using a multi-scale modeling approach. J. Appl. Phys. 2017, 122, 065101.
139. Liu, D.; Li, Q.; Zhu, Y.; et al. High-throughput phase field simulation and machine learning for predicting the breakdown performance of all-organic composites. J. Phys. D:. Appl. Phys. 2024, 57, 415502.
140. Liu, D.; Li, Q.; Zhu, Y.; et al. Physics-informed neural networks for phase-field simulation in designing high energy storage performance polymer nanocomposites. Appl. Phys. Lett. 2025, 126, 052901.
141. Jayakrishnan, A.; Silva, J.; Kamakshi, K.; et al. Are lead-free relaxor ferroelectric materials the most promising candidates for energy storage capacitors? Prog. Mater. Sci. 2023, 132, 101046.
142. Shetty, S.; Damodaran, A.; Wang, K.; et al. Relaxor behavior in ordered lead magnesium niobate (PbMg1/3Nb2/3O3) thin films. Adv. Funct. Materials. 2019, 29, 1804258.
143. Chen, J.; Qi, H.; Zuo, R. Realizing stable relaxor antiferroelectric and superior energy storage properties in (Na1-x/2Lax/2)(Nb1-xTix)O3 lead-free ceramics through A/B-site complex substitution. ACS. Appl. Mater. Interfaces. 2020, 12, 32871-9.
144. Sarkar, A.; Wang, Q.; Schiele, A.; et al. High-entropy oxides: fundamental aspects and electrochemical properties. Adv. Mater. 2019, 31, e1806236.
145. Yang, B.; Zhang, Y.; Pan, H.; et al. High-entropy enhanced capacitive energy storage. Nat. Mater. 2022, 21, 1074-80.
146. Chen, L.; Deng, S.; Liu, H.; Wu, J.; Qi, H.; Chen, J. Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design. Nat. Commun. 2022, 13, 3089.
147. Kim, C.; Pilania, G.; Ramprasad, R. Machine learning assisted predictions of intrinsic dielectric breakdown strength of ABX3 perovskites. J. Phys. Chem. C. 2016, 120, 14575-80.
148. Mu, S.; Samolyuk, G. D.; Wimmer, S.; et al. Uncovering electron scattering mechanisms in NiFeCoCrMn derived concentrated solid solution and high entropy alloys. npj. Comput. Mater. 2019, 5, 138.
149. Liu, P.; Tian, Z.; Chen, Z.; Wen, S.; Zheng, L.; Li, B. Suppressing the phase transition of ZrP2O7 by defect and entropy regulation for high-temperature wave-transparent material application. J. Adv. Ceram. 2024, 13, 1164-77.
150. Zhu, B.; Zhang, J.; Long, F.; et al. Boosting energy-storage in high-entropy pb-free relaxors engineered by local lattice distortion. J. Am. Chem. Soc. 2024, 146, 29694-702.