REFERENCES
1. Zhang, W.; Li, J.; Wei, Z. Carbon-based catalysts of the oxygen reduction reaction: Mechanistic understanding and porous structures. Chin. J. Catal. 2023, 48, 15-31.
2. Wang, C.; Zhang, H.; Wang, Y.; et al. A general strategy for the synthesis of hierarchically ordered metal-organic frameworks with tunable macro-, meso-, and micro-pores. Small 2023, 19, e2206116.
3. Naseem, F.; Lu, P.; Zeng, J.; et al. Solid nanoporosity governs catalytic CO2 and N2 reduction. ACS. Nano. 2020, 14, 7734-59.
4. Wang, A.; Ma, Y.; Zhao, D. Pore engineering of porous materials: effects and applications. ACS. Nano. 2024, 18, 22829-54.
5. Tsakalis, K. Deactivation phenomena by site poisoning and pore blockage: The effect of catalyst size, pore size, and pore size distribution. J. Catal. 1984, 88, 188-202.
6. F. The research progress of catalyst inactivation by poisoning in tar reforming. Min. Eng. 2024, 12, 314-20.
7. Wei, G.; Li, C.; Ge, W.; Li, J. Simulation of pores-scale reaction? Chin. J. Process. Eng. 2021, 21, 265-76.
8. Wild, S.; Mahr, C.; Rosenauer, A.; Risse, T.; Vasenkov, S.; Bäumer, M. New perspectives for evaluating the mass transport in porous catalysts and unfolding macro- and microkinetics. Catal. Lett. 2023, 153, 3405-22.
9. Guan, S.; Zhou, F.; Tan, J.; Pan, M. Influence of pore size optimization in catalyst layer on the mechanism of oxygen transport resistance in PEMFCs. Prog. Nat. Sci:. Mater. Int. 2020, 30, 839-45.
10. Weng, J.; Liu, X.; Yu, J.; et al. Influence of hollow structure of honeycomb catalysts on the pressure drop in packed bed reactors. Chin. J. Chem. Eng. 2022, 73, 266-74.
11. Li, C.; Ren, Y.; Gou, J.; Liu, B.; Xi, H. Facile synthesis of mesostructured ZSM-5 zeolite with enhanced mass transport and catalytic performances. Appl. Surf. Sci. 2017, 392, 785-94.
12. Feng, C.; Liu, J.; Zhao, K.; et al. Influence of pore structure on catalytic performance of Cs-Zr/SiO2 catalyst for methyl methacrylate synthesis from methyl propionate and formaldehyde. Chem. Eng. Sci. 2025, 301, 120760.
13. Tsai, S. B.; Ma, H. A research on preparation and application of the monolithic catalyst with interconnecting pore structure. Sci. Rep. 2018, 8, 16605.
14. Windslow, D.; Diamond, S. A Mercury Porosimetry Study of the Evolution of Porosity in Portland Cement : Technical Publication. Publication FHWA/IN/JHRP-69/31. Joint Highway Research Project, Indiana Department of Transportation and Purdue University, West Lafayette, Indiana, 1969.
15. Juenger MC, Jennings HM. The use of N2 adsorption to assess the microstructure of cement paste. Cem. Concr. Res. 2001, 31, 883-92.
16. Wang, J.; Guo, X. Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere 2020, 258, 127279.
17. Cychosz, K. A.; Guillet-Nicolas, R.; García-Martínez, J.; Thommes, M. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem. Soc. Rev. 2017, 46, 389-414.
18. Fu, S.; Fang, Q.; Li, A.; et al. Accurate characterization of full pore size distribution of tight sandstones by low-temperature nitrogen gas adsorption and high-pressure mercury intrusion combination method. Energy. Sci. Eng. 2021, 9, 80-100.
19. Liu, J.; Ma, J.; Jiang, X.; Jiang, X. The multi-scale pore structure of superfine pulverized coal. Part 1. macropore morphology. Fuel 2021, 304, 120728.
20. Zeng, Q.; Li, K.; Fen-chong, T.; Dangla, P. Pore structure characterization of cement pastes blended with high-volume fly-ash. Cem. Concr. Res. 2012, 42, 194-204.
21. Zhang, Y.; Wu, K.; Yang, Z.; Ye, G. A reappraisal of the ink-bottle effect and pore structure of cementitious materials using intrusion-extrusion cyclic mercury porosimetry. Cem. Concr. Res. 2022, 161, 106942.
22. Morishige, K.; Tateishi, N. Adsorption hysteresis in ink-bottle pore. J. Chem. Phys. 2003, 119, 2301-6.
23. Mousa, S.; Novak, V.; Fletcher, R. S.; et al. Integration of multi-scale porosimetry and multi-modal imaging in the study of structure-transport relationships in porous catalyst pellets. Chem. Eng. J. 2023, 452, 139122.
24. Withers, P. J.; Bouman, C.; Carmignato, S.; et al. X-ray computed tomography. Nat. Rev. Methods. Primers. 2021, 1, 15.
25. Chu, Y. S.; Lee, W.; Tappero, R.; et al. Multimodal, multidimensional, and multiscale X-ray imaging at the national synchrotron light source II. Synchrotron. Radiat. News. 2020, 33, 29-36.
26. Zhou, Z.; Bouwman, W. G.; Schut, H.; et al. From nanopores to macropores: fractal morphology of graphite. Carbon 2016, 96, 541-7.
27. Ziesche, R. F.; Heenan, T. M. M.; Kumari, P.; et al. Multi-dimensional characterization of battery materials. Adv. Energy. Mater. 2023, 13, 2300103.
28. Weber, S.; Zimmermann, R. T.; Bremer, J.; et al. Digitization in catalysis research: towards a holistic description of a Ni/Al2O3 reference catalyst for CO2 methanation. ChemCatChem 2022, 14, e202101878.
29. Qie, Z.; Rabbani, A.; Liang, Y.; et al. Multiscale investigation of pore network heterogeneity and permeability of fluid catalytic cracking (FCC) particles. Chem. Eng. J. 2022, 440, 135843.
30. Das, S.; Pashminehazar, R.; Sharma, S.; Weber, S.; Sheppard, T. L. New dimensions in catalysis research with hard X-ray tomography. Chemie. Ingenieur. Technik. 2022, 94, 1591-610.
31. Zaccarine, S. F.; Shviro, M.; Weker, J. N.; et al. Multi-Scale Multi-technique characterization approach for analysis of PEM electrolyzer catalyst layer degradation. J. Electrochem. Soc. 2022, 169, 064502.
32. Prass, S.; Hasanpour, S.; Sow, P. K.; Phillion, A. B.; Mérida, W. Microscale X-ray tomographic investigation of the interfacial morphology between the catalyst and micro porous layers in proton exchange membrane fuel cells. J. Power. Sources. 2016, 319, 82-9.
33. da, Silva. J. C.; Mader, K.; Holler, M.; et al. Assessment of the 3D pore structure and individual components of preshaped catalyst bodies by X-ray imaging. ChemCatChem 2015, 7, 413-6.
34. Hwang, J.; Jo, C.; Hur, K.; Lim, J.; Kim, S.; Lee, J. Direct access to hierarchically porous inorganic oxide materials with three-dimensionally interconnected networks. J. Am. Chem. Soc. 2014, 136, 16066-72.
35. Theofanidis, S. A.; Galvita, V. V.; Poelman, H.; Marin, G. B. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: role of Fe. ACS. Catal. 2015, 5, 3028-39.
36. Wu, L.; Yu, L.; Zhang, F.; et al. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 2021, 31, 2006484.
37. Zhao, L.; Wei, Y.; Huang, Y.; Liu, Y. La1-xKxFe0.7Ni0.3O3 catalyst for ethanol steam reforming - the effect of K-doping. Catal. Today. 2016, 259, 430-7.
38. Xie, Q.; Ren, D.; Bai, L.; et al. Investigation of nickel iron layered double hydroxide for water oxidation in different pH electrolytes. Chin. J. Catal. 2023, 44, 127-38.
39. Wang, W.; Liu, Y.; Chen, S. Use of NiFe layered double hydroxide as electrocatalyst in oxygen evolution reaction: catalytic mechanisms, electrode design, and durability. Acta. Physico-Chimica. Sinica. 2024, 40, 2303059.
40. Zhao, J.; Zhang, J. J.; Li, Z. Y.; Bu, X. H. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction. Small 2020, 16, e2003916.
41. Landers, J.; Gor, G. Y.; Neimark, A. V. Density functional theory methods for characterization of porous materials. Colloids. Surf. A:. Physicochem. Eng. Asp. 2013, 437, 3-32.
42. Kupgan, G.; Liyana-Arachchi, T. P.; Colina, C. M. NLDFT pore size distribution in amorphous microporous materials. Langmuir 2017, 33, 11138-45.
43. Zhang, J.; Zhang, W. Comparison of common classical analytical models for microporous adsorption. Univ. Chem. 2023, 38, 326-32.
44. Ji, J.; Guo, H.; Xue, Y.; et al. The new X-ray imaging and biomedical application beamline BL13HB at SSRF. Nucl. Sci. Tech. 2023, 34, 1349.
45. Zhang, L.; Tao, F.; Wang, J.; et al. The 3D nanoimaging beamline at SSRF. Nucl. Sci. Tech. 2023, 34, 1347.
46. Rabbani, A.; Jamshidi, S.; Salehi, S. An automated simple algorithm for realistic pore network extraction from micro-tomography images. J. Petrol. Sci. Eng. 2014, 123, 164-71.
47. Liu, G.; Wang, K.; Gao, X.; He, D.; Li, J. Fabrication of mesoporous NiFe2O4 nanorods as efficient oxygen evolution catalyst for water splitting. Electrochimica. Acta. 2016, 211, 871-8.
48. Jin, R.; Jiang, H.; Sun, Y.; Ma, Y.; Li, H.; Chen, G. Fabrication of NiFe2O4/C hollow spheres constructed by mesoporous nanospheres for high-performance lithium-ion batteries. Chem. Eng. J. 2016, 303, 501-10.