REFERENCES
1. Chen, Z.; Wu, H.; Li, J.; et al. Defect enhanced CoP/reduced graphene oxide electrocatalytic hydrogen production with Pt-like activity. Appl. Catal. B. Environ. 2020, 265, 118576.
2. Shi, Y.; Zhao, Q.; Li, J.; Gao, G.; Zhi, J. Onion-liked carbon-embedded graphitic carbon nitride for enhanced photocatalytic hydrogen evolution and dye degradation. Appl. Catal. B. Environ. 2022, 308, 121216.
3. Bie, C.; Wang, L.; Yu, J. Challenges for photocatalytic overall water splitting. Chem 2022, 8, 1567-74.
4. Dingenen, F.; Verbruggen, S. W. Tapping hydrogen fuel from the ocean: a review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater. Renew. Sustain. Energy. Rev. 2021, 142, 110866.
5. Su, H.; Pan, X.; Li, S.; Zhang, H.; Zou, R. Defect-engineered two-dimensional transition metal dichalcogenides towards electrocatalytic hydrogen evolution reaction. Carbon. Energy. 2023, 5, e296.
6. Du, Y.; Lu, T.; Li, X.; et al. High-efficient piezocatalytic hydrogen evolution by centrosymmetric Bi2Fe4O9 nanoplates. Nano. Energy. 2022, 104, 107919.
7. Dai, B.; Fang, J.; Yu, Y.; et al. Construction of infrared-light-responsive photoinduced carriers driver for enhanced photocatalytic hydrogen evolution. Adv. Mater. 2020, 32, 1906361.
8. Zhou, P.; Navid, I. A.; Ma, Y.; et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 2023, 613, 66-70.
9. Teng, J.; Li, W.; Wei, Z.; et al. Coupling photocatalytic hydrogen production with key oxidation reactions. Angew. Chem. Int. Ed. 2024, 63, e202416039.
10. Djellabi, R.; Ordonez, M. F.; Conte, F.; Falletta, E.; Bianchi, C. L.; Rossetti, I. A review of advances in multifunctional XTiO3 perovskite-type oxides as piezo-photocatalysts for environmental remediation and energy production. J. Hazard. Mater. 2022, 421, 126792.
11. Zhang, D.; Wu, H.; Bowen, C. R.; Yang, Y. Recent advances in pyroelectric materials and applications. Small 2021, 17, 2103960.
12. Kim, J.; Oh, J.; Baskaran, S.; et al. Rhenium redefined as electrocatalyst: hydrogen evolution efficiency boost via Pt and Ni doping. Appl. Catal. B. Environ. Energy. 2024, 347, 123791.
13. Aziz, S. T.; Sultana, S.; Kumar, A.; Riyajuddin, S.; Pal, M.; Dutta, A. Transition metal phosphides as cardinal electrocatalytic materials for alkaline hydrogen production. Cell. Rep. Phys. Sci. 2023, 4, 101747.
14. Bai, H.; Chen, D.; Ma, Q.; et al. Atom doping engineering of transition metal phosphides for hydrogen evolution reactions. Electrochem. Energy. Rev. 2022, 5, 24.
15. Zhang, L.; Zhu, J.; Wang, Z.; Zhang, W. 2D MoSe2/CoP intercalated nanosheets for efficient electrocatalytic hydrogen production. Int. J. Hydrogen. Energy. 2020, 45, 19246-56.
16. Saha, A.; Paul, A.; Srivastava, D. N.; Panda, A. B. Exfoliated colloidal MoS2 nanosheet with predominantly 1T phase for electrocatalytic hydrogen production. Int. J. Hydrogen. Energy. 2020, 45, 18645-56.
17. Zhang, M.; Duan, Z.; Cui, L.; et al. A phosphorus modified mesoporous AuRh film as an efficient bifunctional electrocatalyst for urea-assisted energy-saving hydrogen production. J. Mater. Chem. A. 2022, 10, 3086-92.
18. Zhang, Z.; Liu, S.; Zhou, Y.; et al. Engineering ultrafine PtIr alloy nanoparticles into porous nanobowls via a reactive template-engaged assembly strategy for high-performance electrocatalytic hydrogen production. J. Mater. Chem. A. 2024, 12, 10148-56.
19. Chung, W.; Mekhemer, I. M.; Mohamed, M. G.; et al. Recent advances in metal/covalent organic frameworks based materials: their synthesis, structure design and potential applications for hydrogen production. Coord. Chem. Rev. 2023, 483, 215066.
20. Wang, C. P.; Lin, Y. X.; Cui, L.; Zhu, J.; Bu, X. H. 2D metal-organic frameworks as competent electrocatalysts for water splitting. Small 2023, 19, 2207342.
21. Zhang, L.; Wang, W.; Xu, G.; Song, H.; Yang, L.; Jia, D. Facile synthesis of CoxFe1-xP microcubes derived from metal-organic frameworks for efficient oxygen evolution reaction. J. Colloid. Interface. Sci. 2019, 554, 202-9.
22. Wang, Y.; Wu, J. M. Effect of controlled oxygen vacancy on H2-production through the piezocatalysis and piezophototronics of ferroelectric R3C ZnSnO3 nanowires. Adv. Funct. Mater. 2020, 30, 1907619.
23. Kuru, T.; Sarilmaz, A.; Aslan, E.; Ozel, F.; Hatay, Patir. I. Photo-enhanced piezocatalytic hydrogen evolution using in situ silver piezodeposited scheelite-type BaMoO4 and BaWO4. J. Mater. Chem. A. 2024, 12, 1764-71.
24. Wang, S.; Tian, W.; Han, J.; et al. Interfacial self-assembly-induced lattice distortion in Ti3C2 for enhanced piezocatalytic activity. ACS. Appl. Mater. Interfaces. , 2023, 15:55129-38.
25. Shi, W.; Guo, F.; Li, M.; Shi, Y.; Tang, Y. N-doped carbon dots/CdS hybrid photocatalyst that responds to visible/near-infrared light irradiation for enhanced photocatalytic hydrogen production. Sep. Purif. Technol. 2019, 212, 142-9.
26. Zhang, M.; Hu, Q.; Ma, K.; Ding, Y.; Li, C. Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution. Nano. Energy. 2020, 73, 104810.
27. Zhang, Y.; Kumar, S.; Marken, F.; et al. Pyro-electrolytic water splitting for hydrogen generation. Nano. Energy. 2019, 58, 183-91.
28. You, H.; Li, S.; Fan, Y.; et al. Accelerated pyro-catalytic hydrogen production enabled by plasmonic local heating of Au on pyroelectric BaTiO3 nanoparticles. Nat. Commun. 2022, 13, 6144.
29. Shi, W.; Chen, Z.; Lu, J.; et al. Construction of ZrC@ZnIn2S4 core-shell heterostructures for boosted near-infrared-light driven photothermal-assisted photocatalytic H2 evolution. Chem. Eng. J. 2023, 474, 145690.
30. Chen, M.; Li, B.; Ma, K.; et al. Efficient photocatalytic hydrogen production over copper-molybdate coupled with Meso-TiO2 under low concentration of sacrificial agent. Int. J. Hydrogen. Energy. 2024, 59, 1042-53.
31. Yang, L.; Yuan, J.; Wang, G.; et al. Construction of Tri-functional HOFs material for efficient selective adsorption and photodegradation of bisphenol a and hydrogen production. Adv. Funct. Mater. 2023, 33, 2300954.
32. Wang, J.; Tian, J.; Han, P.; et al. Enhanced photocatalytic hydrogen production activity driven by TiO2/(MoP/CdS): insights from powder particles to thin films. Langmuir 2024, 40, 21161-70.
33. Huang, G.; Ye, W.; Lv, C.; et al. Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production. J. Mater. Sci. Technol. 2022, 108, 18-25.
34. Zheng, H.; Wang, Y.; Liu, J.; wang, J.; Yan, K.; Zhu, K. Recent advancements in the use of novel piezoelectric materials for piezocatalytic and piezo-photocatalytic applications. Appl. Catal. B. Environ. 2024, 341, 123335.
35. Feng, X.; Shang, H.; Zhou, J.; et al. Heterostructured core-shell CoS1.097@ZnIn2S4 nanosheets for enhanced photocatalytic hydrogen evolution under visible light. Chem. Eng. J. 2023, 457, 141192.
36. Zhai, B.; Li, H.; Gao, G.; et al. A crystalline carbon nitride based near-infrared active photocatalyst. Adv. Funct. Mater. 2022, 32, 2207375.
37. Wang, C.; Xie, Z.; Wang, Y.; Ding, Y.; Leung, M. K. H.; Ng, Y. H. Defects of metal halide perovskites in photocatalytic energy conversion: friend or foe? Adv. Sci. 2024, 11, 2402471.
38. Lu, P.; Liu, K.; Liu, Y.; et al. Heterostructure with tightly-bound interface between In2O3 hollow fiber and ZnIn2S4 nanosheet toward efficient visible light driven hydrogen evolution. Appl. Catal. B. Environ. 2024, 345, 123697.
39. Wenson, G.; Thakkar, H.; Tsai, H.; Stein, J.; Singh, R.; Nie, W. The degradation and recovery behavior of mixed-cation perovskite solar cells in moisture and a gas mixture environment. J. Mater. Chem. A. 2022, 10, 13519-26.
40. Katsaiti, M.; Papadogiannis, E.; Dracopoulos, V.; Keramidas, A.; Lianos, P. Solar charging of a Zn-air battery. J. Power. Sources. 2023, 555, 232384.
41. Zhou, L.; Yang, T.; Fang, Z.; et al. Boosting of water splitting using the chemical energy simultaneously harvested from light, kinetic energy and electrical energy using N doped 4H-SiC nanohole arrays. Nano. Energy. 2022, 104, 107876.
42. Liu, B.; Wang, S.; Zhang, G.; et al. Tandem cells for unbiased photoelectrochemical water splitting. Chem. Soc. Rev. 2023, 52, 4644-71.
43. Yao, T.; An, X.; Han, H.; Chen, J. Q.; Li, C. Photoelectrocatalytic materials for solar water splitting. Adv. Energy. Mater. 2018, 8, 1800210.
44. Murugan, C.; Mary, A. S.; Velmurugan, R.; Subramanian, B.; Murugan, P.; Pandikumar, A. Investigating the interfacial charge transfer between electrodeposited BiVO4 and pulsed laser-deposited Co3O4 p-n junction photoanode in photoelectrocatalytic water splitting. Chem. Eng. J. 2024, 483, 149104.
45. Wang, G.; Tang, T.; Ye, K. H.; et al. Dual hole transport layers heterojunction and band alignment engineered Mo:BiVO4 photoanodes for efficient water splitting. Small 2024, 20, 2403600.
46. Zhang, F.; Yu, X.; Qian, Y.; et al. Multistage charge redistribution constructing heterostructured WO3@RuSe2 on Si for enhanced photoelectrochemical hydrogen evolution. Chem. Eng. J. 2022, 446, 137462.
47. Bashiri, R.; Irfan, M. S.; Mohamed, N. M.; et al. Hierarchically SrTiO3@TiO2@Fe2O3 nanorod heterostructures for enhanced photoelectrochemical water splitting. Int. J. Hydrogen. Energy. 2021, 46, 24607-19.
48. Kim, Y. K.; Lee, T. H.; Yeop, J.; et al. Hetero-tandem organic solar cells drive water electrolysis with a solar-to-hydrogen conversion efficiency up to 10%. Appl. Catal. B. Environ. 2022, 309, 121237.
49. Seo, S.; Lee, J.; Kim, Y.; et al. A long-term stable organic semiconductor photocathode-based photoelectrochemical module system for hydrogen production. J. Mater. Chem. A. 2022, 10, 13247-53.
50. Gong, L.; Xuan, N.; Gu, G.; et al. Power management and system optimization for high efficiency self-powered electrolytic hydrogen and formic acid production. Nano. Energy. 2023, 107, 108124.
51. Ghosh, K.; Iffelsberger, C.; Konečný, M.; Vyskočil, J.; Michalička, J.; Pumera, M. Nanoarchitectonics of triboelectric nanogenerator for conversion of abundant mechanical energy to green hydrogen. Adv. Energy. Mater. 2023, 13, 2203476.
52. Zhang, W.; He, W.; Dai, S.; et al. Wave energy harvesting based on multilayer beads integrated spherical TENG with switch triggered instant discharging for self-powered hydrogen generation. Nano. Energy. 2023, 111, 108432.
53. Wang, X.; Yang, Q.; Singh, S.; et al. Topological semimetals with intrinsic chirality as spin-controlling electrocatalysts for the oxygen evolution reaction. Nat. Energy. 2025, 10, 101-9.
54. Sun, Q.; He, J.; Nagao, A.; Ni, Y.; Wang, S. Corrigendum to “hydrogen-prompted heterogeneous development of dislocation structure in Ni” [Acta Materialia 246 (2023) 118660]. Acta. Mater. 2024, 270, 119840.
55. Pei, A.; Xie, R.; Zhu, L.; et al. Methanol-enhanced low-cell-voltage hydrogen generation at industrial-grade current density by triadic active sites of Pt1-Pdn-(Ni,Co)(OH)x. J. Am. Chem. Soc. 2025, 147, 3185-94.
56. Wang, S.; Song, C.; Cai, Y.; et al. Interfacial polarization triggered by covalent-bonded MXene and black phosphorus for enhanced electrochemical nitrate to ammonia Conversion. Adv. Energy. Mater. 2023, 13, 2301136.
57. Thakur, D.; Porwal, C.; Singh, Chauhan. V.; Balakrishnan, V.; Vaish, R. 2D transition metal dichalcogenides: synthesis methods and their pivotal role in photo, piezo, and photo-piezocatalytic processes. Sep. Purif. Technol. 2024, 337, 126462.
58. Han, Q.; Han, Z.; Wang, Y.; et al. Enhanced photocatalytic hydrogen evolution by piezoelectric effects based on MoSe2/Se-decorated CdS nanowire edge-on heterostructure. J. Colloid. Interface. Sci. 2023, 630, 460-72.
59. Wang, W.; Zhang, M.; Li, X.; et al. Boosting efficiency in piezo-photocatalysis process using poled Ba0.7Sr0.3TiO3 nanorod arrays for pollutant degradation and hydrogen production. ACS. Appl. Mater. Interfaces. 2024, 16, 20497-509.
60. Tu, S.; Wang, Y.; Huang, H.; et al. Enhanced charge carrier separation by bi-piezoelectric effects based on pine needle-like BaTiO3/ZnO continuous nanofibers. J. Mater. Chem. A. 2022, 10, 13544-55.
61. Jin, X.; Li, X.; Dong, L.; et al. Enhancement and inhibition of photocatalytic hydrogen production by fine piezoelectric potential tuning over piezo-photocatalyst. Nano. Energy. 2024, 123, 109341.
62. Yang, Z.; Xia, X.; Fang, M.; wang, L.; Pan, S.; guo, Y. Promoting the electron/hole co-extraction using piezotronic effect in Pt/ZnIn2S4/BaTiO3 heterojunctions for photocatalytic synergistic hydrogen evolution and HMF oxidation. Mater. Today. Phys. 2023, 36, 101158.
63. Guo, M.; Zhong, J.; Li, W.; et al. Highly-efficient photocatalytic hydrogen evolution enabled by piezotronic effects in SrTiO3/BaTiO3 nanofiber heterojunctions. Nano. Energy. 2024, 127, 109745.
64. Wei, H.; Zhou, L.; Cao, F.; et al. Constructing magnetically propelled piezoelectric and pyroelectric bifunctional micromotors to boost the photocatalytic H2 production involving biomass reforming. Nano. Energy. 2024, 129, 110064.
65. Zhang, S.; Chen, D.; Liu, Z.; Ruan, M.; Guo, Z. Novel strategy for efficient water splitting through pyro-electric and pyro-photo-electric catalysis of BaTiO3 by using thermal resource and solar energy. Appl. Catal. B. Environ. 2021, 284, 119686.