REFERENCES

1. Sun, Z.; He, G.; Meng, Q.; Li, Y.; Tian, X. Corrosion mechanism investigation of TiN/Ti coating and TC4 alloy for aircraft compressor application. Chin. J. Aeronaut. 2020, 33, 1824-35.

2. Ogunmefun, O. A.; Bayode, B. L.; Jamiru, T.; Olubambi, P. A. A critical review of dispersion strengthened titanium alloy fabricated through spark plasma sintering techniques. J. Alloys. Compd. 2023, 960, 170407.

3. Yang, Y.; Chen, T.; Tan, L.; et al. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy. Nature 2021, 595, 245-9.

4. Song, D.; Niu, L.; Yang, S. Research on application technology of titanium alloy in marine pipeline. Rare. Met. Mater. Eng. 2020, 49, 1100-4. Available from: http://www.rmme.ac.cn/rmmeen/article/abstract/17Ti2019209. [Last accessed on 19 Mar 2025]

5. Pandey A, Kumar Dubey A. Simultaneous optimization of multiple quality characteristics in laser cutting of titanium alloy sheet. Opt. Laser. Technol. 2012, 44, 1858-65.

6. Verdhan, N.; Bhende, D.; Kapoor, R.; Chakravartty, J. Effect of microstructure on the fatigue crack growth behaviour of a near-α Ti alloy. Int. J. Fatigue. 2015, 74, 46-54.

7. Heimann, R. B. The nature of plasma spraying. Coatings 2023, 13, 622.

8. Zhou, L.; Luo, F.; Zhou, W.; Zhu, D. Influence of FeCrAl content on microstructure and bonding strength of plasma-sprayed FeCrAl/Al2O3 coatings. J. Therm. Spray. Tech. 2016, 25, 509-17.

9. Uhlmann, D.; Suratwala, T.; Davidson, K.; Boulton, J.; Teowee, G. Sol-gel derived coatings on glass. J. Non-Cryst. Solids. 1997, 218, 113-22.

10. Wang, Y.; Wang, C.; Zhou, S.; et al. Experimental study of repairing rust-cracked reinforced concrete by electrophoresis deposition method. Cem. Concr. Compos. 2023, 143, 105261.

11. Karimzadeh, A.; Aliofkhazraei, M.; Walsh, F. C. A review of electrodeposited Ni-Co alloy and composite coatings: microstructure, properties and applications. Surf. Coat. Technol. 2019, 372, 463-98.

12. Yerokhin, A.; Nie, X.; Leyland, A.; Matthews, A.; Dowey, S. Plasma electrolysis for surface engineering. Surf. Coat. Technol. 1999, 122, 73-93.

13. Yao, W.; Wu, L.; Wang, J.; et al. Micro-arc oxidation of magnesium alloys: a review. J. Mater. Sci. Technol. 2022, 118, 158-80.

14. Al-Ahmad, A.; Wiedmann-Al-Ahmad, M.; Faust, J.; et al. Biofilm formation and composition on different implant materials in vivo. J. Biomed. Mater. Res. B. Appl. Biomater. 2010, 95, 101-9.

15. Simchen, F.; Sieber, M.; Kopp, A.; Lampke, T. Introduction to plasma electrolytic oxidation-an overview of the process and applications. Coatings 2020, 10, 628.

16. Dzhurinskiy, D.; Gao, Y.; Yeung, W.; et al. Characterization and corrosion evaluation of TiO2:n-HA coatings on titanium alloy formed by plasma electrolytic oxidation. Surf. Coat. Technol. 2015, 269, 258-65.

17. Li, L. H.; Kong, Y. M.; Kim, H. W.; et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 2004, 25, 2867-75.

18. Guo, H.; An, M.; Huo, H.; Xu, S.; Wu, L. Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions. Appl. Surf. Sci. 2006, 252, 7911-6.

19. Wang, Z.; Zhang, J.; Li, Y.; Bai, L.; Zhang, G. Enhanced corrosion resistance of micro-arc oxidation coated magnesium alloy by superhydrophobic Mg-Al layered double hydroxide coating. Trans. Nonferrous. Met. Soc. China. 2019, 29, 2066-77.

20. Gu, Y.; Bandopadhyay, S.; Chen, C.; Guo, Y.; Ning, C. Effect of oxidation time on the corrosion behavior of micro-arc oxidation produced AZ31 magnesium alloys in simulated body fluid. J. Alloys. Compd. 2012, 543, 109-17.

21. Wang, P.; Xiao, Y.; Zhou, Z.; et al. Effect of MgO microparticles on characteristics of microarc oxidation coatings fabricated on pure titanium. Int. J. Electrochem. Sci. 2019, 14, 287-300.

22. Zhang, G.; Wu, L.; Tang, A.; et al. Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31. Corros. Sci. 2018, 139, 370-82.

23. Lv, X.; Zou, G.; Ling, K.; Yang, W.; Mo, Q.; Li, W. Tribological properties of MAO/MoS2 self-lubricating composite coating by microarc oxidation and hydrothermal reaction. Surf. Coat. Technol. 2021, 406, 126630.

24. Wang, H.; Chen, D.; An, X.; et al. Deformation-induced crystalline-to-amorphous phase transformation in a CrMnFeCoNi high-entropy alloy. Sci. Adv. 2021, 7, abe3105.

25. Idrissi, H.; Béché, A.; Gauquelin, N.; et al. On the formation mechanisms of intragranular shear bands in olivine by stress-induced amorphization. Acta. Mater. 2022, 239, 118247.

26. Costa, M.; Venditti, M.; Voorwald, H.; Cioffi, M.; Cruz, T. Effect of WC-10%Co-4%Cr coating on the Ti-6Al-4V alloy fatigue strength. Mater. Sci. Eng. A. 2009, 507, 29-36.

27. Carpinteri, A.; Brighenti, R.; Vantadori, S. A numerical analysis on the interaction of twin coplanar flaws. Eng. Fract. Mech. 2004, 71, 485-99.

28. Guo, T.; Chen, Y.; Cao, R.; Pang, X.; He, J.; Qiao, L. Cleavage cracking of ductile-metal substrates induced by brittle coating fracture. Acta. Mater. 2018, 152, 77-85.

29. Bai, Y.; Xi, Y.; Gao, K.; et al. Brittle coating effects on fatigue cracks behavior in Ti alloys. Int. J. Fatigue. 2019, 125, 432-9.

30. Wei, D.; Du, Q.; Wang, S.; et al. Rapid fabrication, microstructure, and in vitro and in vivo investigations of a high-performance multilayer coating with external, flexible, and silicon-doped hydroxyapatite nanorods on titanium. ACS. Biomater. Sci. Eng. 2019, 5, 4244-62.

31. Luo, Z.; Guo, X.; Hou, J.; Zhou, X.; Li, X.; Lu, K. Plastic deformation induced hexagonal-close-packed nickel nano-grains. Scripta. Mater. 2019, 168, 67-70.

32. Wang, Y.; Zhang, W.; Wang, L.; et al. In situ TEM study of deformation-induced crystalline-to-amorphous transition in silicon. Npg. Asia. Mater. 2016, 8, e291. Available from: http://hdl.handle.net/1721.1/117061.[Last accessed on 17 Mar 2025]

33. Hu, J.; Han, F.; Ali, M.; et al. Atomic scale investigation of the phase transformation path from HCP to FCC in high-purity hafnium during torsion deformation. Scripta. Mater. 2024, 253, 116314.

34. Ma, Y.; Chen, Y.; Yu, X.; Zhang, B.; Wang, L.; He, Y. In situ TEM observation of HCP to FCC transitions in hexagonal close-packed titanium. Mater. Res. Lett. 2024, 12, 956-62.

35. Yuan, F.; Han, F.; Zhang, Y.; et al. Intermediate state of hexagonal close-packed structure to face-centered cubic structure transformation: direct evidence for basal-type face-centered cubic phase via partial dislocation in zirconium. J. Mater. Sci. Technol. 2022, 98, 44-50.

36. Kou, W.; Sun, Q.; Xiao, L.; Sun, J. Plastic deformation-induced HCP-to-FCC phase transformation in submicron-scale pure titanium pillars. J. Mater. Sci. 2020, 55, 2193-201.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/