REFERENCES
1. Yeh, J.; Chen, S.; Lin, S.; et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299-303.
2. Cantor, B.; Chang, I.; Knight, P.; Vincent, A. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 2004, 375-377, 213-8.
3. He, Z.; Jia, N.; Yan, H.; et al. Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy. Int. J. Plast. 2021, 139, 102965.
4. He, Z.; Guo, Y.; Sun, L.; et al. Interstitial-driven local chemical order enables ultrastrong face-centered cubic multicomponent alloys. Acta. Mater. 2023, 243, 118495.
5. Li, Z.; Pradeep, K. G.; Deng, Y.; Raabe, D.; Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 2016, 534, 227-30.
6. Marques, F.; Balcerzak, M.; Winkelmann, F.; Zepon, G.; Felderhoff, M. Review and outlook on high-entropy alloys for hydrogen storage. Energy. Environ. Sci. 2021, 14, 5191-227.
7. Liu, Y.; Du, H.; Zhang, X.; Yang, Y.; Gao, M.; Pan, H. Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride. Chem. Commun. 2016, 52, 705-8.
8. Pang, Y.; Liu, Y.; Gao, M.; et al. A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures. Nat. Commun. 2014, 5, 3519.
9. Zhang, X.; Liu, Y.; Ren, Z.; et al. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energy. Environ. Sci. 2021, 14, 2302-13.
10. Min, J.; Yuan, Y.; He, Z.; Zhu, M.; Chen, W.; Jia, N. Superior mechanical properties and multiple strengthening mechanisms of a V-alloyed FeMnCoCr high-entropy alloy. Mater. Sci. Eng. A. 2024, 902, 146614.
11. Li, Z.; Raabe, D. Strong and ductile non-equiatomic high-entropy alloys: design, processing, microstructure, and mechanical properties. JOM. 2017, 69, 2099-106.
12. Li, Z.; Tasan, C. C.; Springer, H.; Gault, B.; Raabe, D. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Sci. Rep. 2017, 7, 40704.
13. Zhang, H.; Zhao, M.; Zhang, J.; Zhao, X.; Fang, F.; Jia, N. Ultrahigh strength induced by multiple heterostructures in a FeMnCoCrN high-entropy alloy fabricated by powder metallurgy technique. Mater. Sci. Eng. A. 2022, 846, 143304.
14. Su, J.; Raabe, D.; Li, Z. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy. Acta. Mater. 2019, 163, 40-54.
15. Yuan, Y.; Wang, J.; Wei, J.; Chen, W.; Yan, H.; Jia, N. Cu alloying enables superior strength-ductility combination and high corrosion resistance of FeMnCoCr high entropy alloy. J. Alloy. Compd. 2024, 970, 172543.
16. Li, Z.; Tasan, C. C.; Pradeep, K. G.; Raabe, D. A TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior. Acta. Mater. 2017, 131, 323-35.
18. Zhu, Y. T.; Wu, X. L. Introduction to heterostructured materials. Oxford: Elsevier; 2023. pp. 9-10. Available from: https://doi.org/10.1016/C2021-0-00963-9. [Last accessed on 17 Mar 2025].
19. Li, A.; Yu, P.; Gao, Y.; Dove, M.; Li, G. Ultra-high strength and excellent ductility high entropy alloy induced by nano-lamellar precipitates and ultrafine grain structure. Mater. Sci. Eng. A. 2023, 862, 144286.
20. Yang, Y.; Liu, Y.; Jiang, S.; et al. Achieving exceptional strength and ductility combination in a heterostructured Mg-Y alloy with densely refined twins. J. Mater. Scie. Technol. 2024, 189, 132-45.
21. Wu, X.; Yang, M.; Yuan, F.; et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 14501-5.
22. Li, J.; Cao, Y.; Gao, B.; Li, Y.; Zhu, Y. Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure. J. Mater. Sci. 2018, 53, 10442-56.
23. Zhang, Z.; Orlov, D.; Vajpai, S. K.; Tong, B.; Ameyama, K. Importance of bimodal structure topology in the control of mechanical properties of a stainless steel. Adv. Eng. Mater. 2015, 17, 791-5.
24. Zhang, Z.; Vajpai, S. K.; Orlov, D.; Ameyama, K. Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics. Mater. Sci. Eng. A. 2014, 598, 106-13.
25. Yang, Y.; Liu, Y.; Yan, S.; et al. On the micromechanism of superior strength and ductility synergy in a heterostructured Mg-2.77Y alloy. J. Magnes. Alloys. 2024, 12, 2793-811.
26. Pu, Z.; Cai, S.; Dai, L. Effective strengthening and toughening in high entropy-alloy by combining extrusion machining and heat treatment. Scr. Mater. 2022, 213, 114630.
27. Sun, W.; Luo, J.; Chan, Y. Y.; Luan, J.; Yang, X. An extraordinary-performance gradient nanostructured Hadfield manganese steel containing multi-phase nanocrystalline-amorphous core-shell surface layer by laser surface processing. J. Mater. Sci. Technol. 2023, 134, 209-22.
28. Sun, Y.; Kong, X.; Wang, Z. Superior mechanical properties and deformation mechanisms of a 304 stainless steel plate with gradient nanostructure. Int. J. Plast. 2022, 155, 103336.
29. Wang, Z.; Lu, W.; Zhao, H.; et al. Ultrastrong lightweight compositionally complex steels via dual-nanoprecipitation. Sci. Adv. 2020, 6.
30. Li, G.; Liu, M.; Lyu, S.; et al. Simultaneously enhanced strength and strain hardening capacity in FeMnCoCr high-entropy alloy via harmonic structure design. Scr. Mater. 2021, 191, 196-201.
31. Jiang, S.; Peng, R. L.; Hegedűs, Z.; et al. Micromechanical behavior of multilayered Ti/Nb composites processed by accumulative roll bonding: an in-situ synchrotron X-ray diffraction investigation. Acta. Mater. 2021, 205, 116546.
32. Li, A.; Liu, X.; Li, R.; et al. Double heterogeneous structures induced excellent strength-ductility synergy in Ni40Co30Cr20Al5Ti5 medium-entropy alloy. J. Mater. Scie. Technol. 2024, 181, 176-88.
33. Guo, S.; Ma, Z.; Xia, G.; et al. Pursuing ultrastrong and ductile medium entropy alloys via architecting nanoprecipitates-enhanced hierarchical heterostructure. Acta. Mater. 2024, 263, 119492.
34. Zhao, G.; Zhang, J.; Li, J.; Li, H.; Liu, H.; Ma, L. Effect of copper on edge cracking behavior and microstructure of rolled austenitic stainless steel plate. J. Iron. Steel. Res. Int. 2022, 29, 281-94.
35. Gao, J.; Jiang, S.; Zhang, H.; et al. Facile route to bulk ultrafine-grain steels for high strength and ductility. Nature 2021, 590, 262-7.
36. Wang, X.; Xu, L.; Jiao, L.; et al. Inhibition of the intergranular brittleness of HR3C heat-resistant steel by strain-aging induced nano-M23C6 dispersion precipitation. J. Mater. Scie. Technol. 2025, 213, 288-99.
37. Weygand, D.; Bréchet, Y.; Lépinoux, J. Zener pinning and grain growth: a two-dimensional vertex computer simulation. Acta. Mater. 1999, 47, 961-70.
38. Humphreys, F.; Ardakani, M. Grain boundary migration and zener pinning in particle-containing copper crystals. Acta. Mater. 1996, 44, 2717-27.
39. Moon, J.; Bouaziz, O.; Kim, H. S.; Estrin, Y. Twinning Engineering of a CoCrFeMnNi high-entropy alloy. Scr. Mater. 2021, 197, 113808.
40. He, Z.; Jia, N.; Wang, H.; Yan, H.; Shen, Y. Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature. J. Mater. Sci. Technol. 2021, 86, 158-70.
41. Zhang, Z.; Chen, D. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scr. Mater. 2006, 54, 1321-6.
42. Wu, Y.; Zhao, X.; Chen, Q.; et al. Strengthening and fracture mechanisms of a precipitation hardening high-entropy alloy fabricated by selective laser melting. Virtual. Phys. Prototyp. 2022, 17, 451-67.
43. Zhang, Q.; Chen, D. A model for predicting the particle size dependence of the low cycle fatigue life in discontinuously reinforced MMCs. Scr. Mater. 2004, 51, 863-7.
45. Dini, G.; Ueji, R.; Najafizadeh, A.; Monir-vaghefi, S. Flow stress analysis of TWIP steel via the XRD measurement of dislocation density. Mater. Sci. Eng. A. 2010, 527, 2759-63.
46. Liu, S.; Xiong, Z.; Guo, H.; Shang, C.; Misra, R. The significance of multi-step partitioning: Processing-structure-property relationship in governing high strength-high ductility combination in medium-manganese steels. Acta. Mater. 2017, 124, 159-72.
47. Sun, L. F.; He, Z. F.; Jia, N.; et al. Local chemical order enables an ultrastrong and ductile high-entropy alloy in a cryogenic environment. Sci. Adv. 2024, 10, eadq6398.
48. Basu, I.; De, H. J. T. Strengthening mechanisms in high entropy alloys: Fundamental issues. Scr. Mater. 2020, 187, 148-56.
49. Biswas, K.; Yeh, J.; Bhattacharjee, P. P.; Dehosson, J. T. High entropy alloys: key issues under passionate debate. Scr. Mater. 2020, 188, 54-8.
50. Zhu, Y.; Wu, X. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater. Res. Lett. 2019, 7, 393-8.
51. Yang, M.; Pan, Y.; Yuan, F.; Zhu, Y.; Wu, X. Back stress strengthening and strain hardening in gradient structure. Mater. Res. Lett. 2016, 4, 145-51.
52. Picak, S.; Liu, J.; Hayrettin, C.; et al. Anomalous work hardening behavior of Fe40Mn40Cr10Co10 high entropy alloy single crystals deformed by twinning and slip. Acta. Mater. 2019, 181, 555-69.
53. Ming, K.; Bi, X.; Wang, J. Strength and ductility of CrFeCoNiMo alloy with hierarchical microstructures. Int. J. Plast. 2019, 113, 255-68.
54. Laplanche, G.; Kostka, A.; Horst, O.; Eggeler, G.; George, E. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta. Mater. 2016, 118, 152-63.
55. Wang, J.; Zou, J.; Yang, H.; et al. Ultrastrong and ductile (CoCrNi)94Ti3Al3 medium-entropy alloys via introducing multi-scale heterogeneous structures. J. Mater. Sci. Technol. 2023, 135, 241-9.