REFERENCES
1. He, J.; Tritt, T. M. Advances in thermoelectric materials research: looking back and moving forward. Science 2017, 357, eaak9997.
3. Yang, J.; Shi, X.; Zhang, W.; Chen, L.; Yang, J. Ab initio-based band engineering and rational design of thermoelectric materials. In: Materials, preparation, and characterization in thermoelectrics. New York: CRC press. 2012.
4. Lin, S.; Guo, L.; Wang, X.; et al. Revealing the promising near-room-temperature thermoelectric performance in Ag2Se single crystals. J. Mater. 2023, 9, 754-61.
5. Wei, T. R.; Guan, M.; Yu, J.; Zhu, T.; Chen, L.; Shi, X. How to measure thermoelectric properties reliably. Joule 2018, 2, 2183-8.
6. Tan, G.; Zhao, L. D.; Kanatzidis, M. G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 2016, 116, 12123-49.
7. Zhu, T.; Liu, Y.; Fu, C.; Heremans, J. P.; Snyder, J. G.; Zhao, X. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 2017, 29, 1605884.
8. Liu, W. D.; Chen, Z. G.; Zou, J. Eco-friendly higher manganese silicide thermoelectric materials: progress and future challenges. Adv. Energy. Mater. 2018, 8, 1800056.
9. Lu, X.; Morelli, D. T.; Xia, Y.; et al. High performance thermoelectricity in earth-abundant compounds based on natural mineral tetrahedrites. Adv. Energy. Mater. 2013, 3, 342-8.
10. Wei, T. R.; Qiu, P.; Zhao, K.; Shi, X.; Chen, L. Ag2Q-based (Q = S, Se, Te) silver chalcogenide thermoelectric materials. Adv. Mater. 2023, 35, e2110236.
11. Liu, Y.; Zhi, J.; Li, W.; Yang, Q.; Zhang, L.; Zhang, Y. Oxide materials for thermoelectric conversion. Molecules 2023, 28, 5894.
12. Zhao, Z.; Zhang, X.; Zhao, L. D. Strategies for manipulating thermoelectric properties of layered oxides. Matter 2023, 6, 3274-95.
13. Terasaki, I.; Sasago, Y.; Uchinokura, K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B. 1997, 56, R12685.
14. Van Nong N, Pryds N, Linderoth S, Ohtaki M. Enhancement of the thermoelectric performance of p-type layered oxide Ca3Co4O9+δ through heavy doping and metallic nanoinclusions. Adv. Mater. 2011, 23, 2484-90.
15. Combe, E.; Guilmeau, E.; Savary, E.; et al. Microwave sintering of Ge-doped In2O3 thermoelectric ceramics prepared by slip casting process. J. Eur. Ceram. Soc. 2015, 35, 145-51.
16. Li, Y.; Liu, X.; Zhang, P.; Han, Y.; Huang, M.; Wan, C. Theoretical insights into the Peierls plasticity in SrTiO3 ceramics via dislocation remodelling. Nat. Commun. 2022, 13, 6925.
17. Zhao, L. D.; He, J.; Berardan, D.; et al. BiCuSeO oxyselenides: new promising thermoelectric materials. Energy. Environ. Sci. 2014, 7, 2900-24.
18. Li, F.; Li, J. F.; Zhao, L. D.; et al. Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energy. Environ. Sci. 2012, 5, 7188-95.
19. Li, Q.; Chen, Y.; Yu, C.; Young, L.; Spector, J.; Harris, V. G. Emerging magnetodielectric materials for 5G communications: 18H hexaferrites. Acta. Mater. 2022, 231, 117854.
20. Jasrotia, R.; Prakash, J.; Himanshi; et al. Advancements in doping strategies for enhancing applications of M-type hexaferrites: a comprehensive review. Prog. Solid. State. Chem. 2023, 72, 100427.
21. Hu, C.; Jiang, T.; Qian, Q.; Liu, C.; Wu, F.; Ji, G. Rare earth Nd3+ ions-doped W-type barium ferrite for efficient microwave absorption and its optimization mechanism. J. Mater. Sci. Mater. Electron. 2023, 34, 2295.
22. Shan, S.; Li, J.; Zhao, X.; et al. Magnetic properties of Sm-doped M-type barium ferrite by high-energy ball mill-assisted solid-phase reaction method. J. Magn. Magn. Mater. 2024, 589, 171558.
23. Jasrotia, R.; Pratap, S. V.; Kumar, R.; Singha, K.; Chandel, M.; Singh, M. Analysis of Cd2+ and In3+ ions doping on microstructure, optical, magnetic and mossbauer spectral properties of sol-gel synthesized BaM hexagonal ferrite based nanomaterials. Res. Phy. 2019, 12, 1933-41.
24. Nikmanesh, H.; Hoghoghifard, S.; Hadi-Sichani, B. Study of the structural, magnetic, and microwave absorption properties of the simultaneous substitution of several cations in the barium hexaferrite structure. J. Alloys. Compd. 2019, 775, 1101-8.
25. Pullar, R. C. Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 2012, 57, 1191-334.
26. Ebnabbasi, K.; Mohebbi, M.; Vittoria, C. Room temperature magnetoelectric effects in bulk poly-crystalline materials of M- and Z-type hexaferrites. J. Appl. Phys. 2013, 113, 17C703.
27. Kitagawa, Y.; Hiraoka, Y.; Honda, T.; Ishikura, T.; Nakamura, H.; Kimura, T. Low-field magnetoelectric effect at room temperature. Nat. Mater. 2010, 9, 797-802.
28. Liu, Y.; Wei, T. R.; Wu, J.; et al. Non-layered InSe nanocrystalline bulk materials with ultra-low thermal conductivity. J. Mater. 2024, 10, 448-55.
29. Al-Hammadi, A. H.; Khoreem, S. H. Investigations on optical and electrical conductivity of Ba/Ni/Zn/Fe16O27 Ferrite nanoparticles. Biointerface. Res. Appl. Chem. 2022, 13, 168.
30. Janu, Y.; Chaudhary, D.; Singhal, N.; et al. Tuning of electromagnetic properties in Ba(MnZn)xCo2(1-x)Fe16O27/NBR flexible composites for wide band microwave absorption in 6-18 GHz. J. Magn. Magn. Mater. 2021, 527, 167666.
31. Zi, Z. F.; Dai, J. M.; Liu, Q. C.; Liu, H. Y.; Zhu, X. B.; Sun, Y. P. Magnetic and microwave absorption properties of W-type Ba(ZnxCo1-x)2Fe16O27 hexaferrite platelets. J. Appl. Phys. 2011, 109, 07E536.
33. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.
34. Blöchl, P. E.; Jepsen, O.; Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B. Condens. Matter. 1994, 49, 16223.
35. Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B. 2006, 73, 195107.
36. Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A. 1952, 65, 349-54.
37. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallog. 2011, 44, 1272-6.
38. Collomb, A.; Wolfers, P.; Obradors, X. Neutron diffraction studies of some hexagonal ferrites: BaFe12O19, BaMg2-W and BaCo2-W. J. Magn. Magn. Mater. 1986, 62, 57-67.
39. Lisjak, D.; Žnidaršič, A.; Sztanislav, A.; Drofenik, M. A two-step synthesis of NiZn-W hexaferrites. J. Eur. Ceram. Soc. 2008, 28, 2057-62.
40. Yosif, M.; Khan, M. A.; Rasool, R. T.; et al. Impact of Gd-substitution on structural, dielectric, spectroscopic, Raman, and photo luminance properties of Ba0.4Sr0.6Co2Fe16O27 ceramics. Mater. Chem. Phys. 2024, 324, 129701.
41. Ri, C. H.; Li, L.; Qi, Y. Anisotropy of the electrical conductivity in W-type hexagonal ferrites BaFe18O27 and BaCo2Fe16O27 from first principles. J. Magn. Magn. Mater. 2012, 324, 1498-502.
42. Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comp. Mater. Sci. 2006, 36, 354-60.
43. Kreisel, J.; Lucazeau, G.; Vincent, H. Raman spectra and vibrational analysis of BaFe12O19 hexagonal ferrite. J. Solid. State. Chem. 1998, 137, 127-37.
44. Koide, M.; Kakizaki, K.; Kamishima, K. Synthesis and magnetic properties of Fe2W and Fe2Y hexaferrites. J. Magn. Soc. Jpn. 2015, 39, 147-50.
45. May, A. F.; Snyder, G. J. Introduction to modeling thermoelectric transport at high temperatures. In: Materials, Preparation, and Characterization in Thermoelectrics. New York: CRC Press; 2012. pp. 1-18.
46. Hanus, R.; Agne, M. T.; Rettie, A. J. E.; et al. Lattice softening significantly reduces thermal conductivity and leads to high thermoelectric efficiency. Adv. Mater. 2019, 31, e1900108.
47. Ma, Y.; Huang, H.; Liu, Y.; et al. Remarkable plasticity and softness of polymorphic InSe van der Waals crystals. J. Mater. 2023, 9, 709-16.
48. Deng, T.; Wei, T. R.; Huang, H.; et al. Number mismatch between cations and anions as an indicator for low lattice thermal conductivity in chalcogenides. NPJ. Comput. Mater. 2020, 6, 81.
49. Wu, J.; Lin, Y.; Shu, M.; et al. Uncovering the phonon spectra and lattice dynamics of plastically deformable InSe van der Waals crystals. Nat. Commun. 2024, 15, 6248.
50. Lin, J. H.; Hwang, C. S.; Sie, F. R. Preparation and thermoelectric properties of Nd and Dy co-doped SrTiO3 bulk materials. Mater. Res. Bull. 2020, 122, 110650.
51. Butt, S.; Xu, W.; He, W. Q.; et al. Enhancement of thermoelectric performance in Cd-doped Ca3Co4O9 via spin entropy, defect chemistry and phonon scattering. J. Mater. Chem. A. 2014, 2, 19479-87.
52. Schlichting, K. W.; Padture, N. P.; Klemens, P. G. Thermal conductivity of dense and porous yttria-stabilized zirconia. J. Mater. Sci. 2001, 36, 3003-10.