REFERENCES
1. Zhou, F.; Gong, H.; Xiao, M.; et al. An avalanche-and-surge robust ultrawide-bandgap heterojunction for power electronics. Nat. Commun. 2023, 14, 4459.
2. Kim, H.; Uddin, S. Z.; Lien, D. H.; et al. Actively variable-spectrum optoelectronics with black phosphorus. Nature 2021, 596, 232-7.
3. Luo, L.; Huang, Y.; Cheng, K.; et al. MXene-GaN van der Waals metal-semiconductor junctions for high performance multiple quantum well photodetectors. Light. Sci. Appl. 2021, 10, 177.
4. Makita, T.; Kumagai, S.; Kumamoto, A.; et al. High-performance, semiconducting membrane composed of ultrathin, single-crystal organic semiconductors. Proc. Natl. Acad. Sci. USA. 2020, 117, 80-5.
5. Nguyen, T. K.; Barton, M.; Ashok, A.; et al. Wide bandgap semiconductor nanomembranes as a long-term biointerface for flexible, implanted neuromodulator. Proc. Natl. Acad. Sci. USA. 2022, 119, e2203287119.
6. Park, S. H.; Yuan, G.; Chen, D.; et al. Wide bandgap III-nitride nanomembranes for optoelectronic applications. Nano. Lett. 2014, 14, 4293-8.
7. Shi, J.; Zhang, J.; Yang, L.; Qu, M.; Qi, D. C.; Zhang, K. H. L. Wide bandgap oxide semiconductors: from materials physics to optoelectronic devices. Adv. Mater. 2021, 33, e2006230.
8. Wang, Y.; Xu, W.; Fu, L.; et al. Realization of robust and ambient-stable room-temperature ferromagnetism in wide bandgap semiconductor 2D carbon nitride sheets. ACS. Appl. Mater. Interfaces. 2023, 15, 54797-807.
9. Tsao, J. Y.; Chowdhury, S.; Hollis, M. A.; et al. Ultrawide-bandgap semiconductors: research opportunities and challenges. Adv. Elect. Materials. 2018, 4, 1600501.
10. Zhang, J.; Dong, P.; Dang, K.; et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes. Nat. Commun. 2022, 13, 3900.
11. Xie, C.; Lu, X.; Tong, X.; et al. Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors. Adv. Funct. Materials. 2019, 29, 1806006.
12. Chen, Y.; Liu, K.; Liu, J.; et al. Growth of 2D GaN single crystals on liquid metals. J. Am. Chem. Soc. 2018, 140, 16392-5.
13. Razeghi, M. Short-wavelength solar-blind detectors-status, prospects, and markets. Proc. IEEE. 2002, 90, 1006-14.
14. Wang, J.; Xie, N.; Xu, F.; et al. Group-III nitride heteroepitaxial films approaching bulk-class quality. Nat. Mater. 2023, 22, 853-9.
15. Ohtomo, A.; Kawasaki, M.; Koida, T.; et al. Mg x Zn1−xO as a II–VI widegap semiconductor alloy. Appl. Phys. Lett. 1998, 72, 2466-8.
16. Han, D.; Liu, K.; Yang, J.; et al. Performance enhancement of a p-Si/n-ZnGa2O4 heterojunction solar-blind UV photodetector through interface engineering. J. Mater. Chem. C. 2021, 9, 10013-9.
17. Yang, Y.; Liu, S.; Wang, X.; et al. Polarization-sensitive ultraviolet photodetection of anisotropic 2D GeS2. Adv. Funct. Materials. 2019, 29, 1900411.
18. Zheng, Y.; Tang, X.; Wang, W.; Jin, L.; Li, G. Large-size ultrathin α-Ga2S3 nanosheets toward high-performance photodetection. Adv. Funct. Materials. 2021, 31, 2008307.
19. Zhou, N.; Gan, L.; Yang, R.; et al. Nonlayered two-dimensional defective semiconductor γ-Ga2S3 toward broadband photodetection. ACS. Nano. 2019, 13, 6297-307.
20. Yan, Y.; Yang, J.; Du, J.; et al. Cross-substitution promoted ultrawide bandgap up to 4.5 eV in a 2D semiconductor: gallium thiophosphate. Adv. Mater. 2021, 33, e2008761.
22. Li, L.; Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS. Nano. 2017, 11, 6382-8.
23. Liu, X.; Geng, X.; Liu, H.; et al. Recent progress and applications of HfO2-based ferroelectric memory. Tsinghua. Sci. Technol. 2023, 28, 221-9.
24. Schroeder, U.; Park, M. H.; Mikolajick, T.; Hwang, C. S. The fundamentals and applications of ferroelectric HfO2. Nat. Rev. Mater. 2022, 7, 653-69.
25. Garrity, E. M.; Lee, C.; Gorai, P.; Tellekamp, M. B.; Zakutayev, A.; Stevanović, V. Computational identification of ternary wide-band-gap oxides for high-power electronics. PRX. Energy. 2022, 1.
26. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-8.
27. Gorai, P.; Krasikov, D.; Grover, S.; Xiong, G.; Metzger, W. K.; Stevanović, V. A search for new back contacts for CdTe solar cells. Sci. Adv. 2023, 9, eade3761.
28. Perdew, J. P.; Levy, M. Physical content of the exact kohn-sham orbital energies: band gaps and derivative discontinuities. Phys. Rev. Lett. 1983, 51, 1884-7.
29. Heyd, J.; Peralta, J. E.; Scuseria, G. E.; Martin, R. L. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys. 2005, 123, 174101.
30. Masood, H.; Sirojan, T.; Toe, C. Y.; et al. Enhancing prediction accuracy of physical band gaps in semiconductor materials. Cell. Rep. Phys. Sci. 2023, 4, 101555.
31. Rosen, A. S.; Iyer, S. M.; Ray, D.; et al. Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery. Matter 2021, 4, 1578-97.
32. Wang, X.; Huang, Y.; Xie, X.; et al. Bayesian-optimization-assisted discovery of stereoselective aluminum complexes for ring-opening polymerization of racemic lactide. Nat. Commun. 2023, 14, 3647.
33. Jain, A.; Ong, S. P.; Hautier, G.; et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL. Materials. 2013, 1, 011002.
34. Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials design and discovery with high-throughput density functional theory: The Open Quantum Materials Database (OQMD). JOM. 2013, 65, 1501-9.
35. Curtarolo, S.; Setyawan, W.; Wang, S.; et al. AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 2012, 58, 227-35.
36. Sutton, C.; Boley, M.; Ghiringhelli, L. M.; Rupp, M.; Vreeken, J.; Scheffler, M. Identifying domains of applicability of machine learning models for materials science. Nat. Commun. 2020, 11, 4428.
37. He, L.; Li, Y.; Torrent, D.; Zhuang, X.; Rabczuk, T.; Jin, Y. Machine learning assisted intelligent design of meta structures: a review. Microstructures 2023, 3, 2023037.
38. Li, C.; Hao, H.; Xu, B.; et al. A progressive learning method for predicting the band gap of ABO 3 perovskites using an instrumental variable. J. Mater. Chem. C. 2020, 8, 3127-36.
39. Lu, S.; Zhou, Q.; Ma, L.; Guo, Y.; Wang, J. Rapid discovery of ferroelectric photovoltaic perovskites and material descriptors via machine learning. Small. Methods. 2019, 3, 1900360.
40. Lu, S.; Zhou, Q.; Ouyang, Y.; Guo, Y.; Li, Q.; Wang, J. Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nat. Commun. 2018, 9, 3405.
41. Park, H.; Mall, R.; Ali, A.; Sanvito, S.; Bensmail, H.; El-mellouhi, F. Importance of structural deformation features in the prediction of hybrid perovskite bandgaps. Comput. Mater. Sci. 2020, 184, 109858.
42. Dan, Y.; Zhao, Y.; Li, X.; Li, S.; Hu, M.; Hu, J. Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials. npj. Comput. Mater. 2020, 6, 352.
43. Lee, J.; Seko, A.; Shitara, K.; Nakayama, K.; Tanaka, I. Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques. Phys. Rev. B. 2016, 93.
44. Shi, Z.; Tsymbalov, E.; Dao, M.; Suresh, S.; Shapeev, A.; Li, J. Deep elastic strain engineering of bandgap through machine learning. Proc. Natl. Acad. Sci. USA. 2019, 116, 4117-22.
45. Zhuo, Y.; Mansouri, T. A.; Brgoch, J. Predicting the band gaps of inorganic solids by machine learning. J. Phys. Chem. Lett. 2018, 9, 1668-73.
46. Dau, M. T.; Al, K. M.; Michon, A.; Reserbat-Plantey, A.; Vézian, S.; Boucaud, P. Descriptor engineering in machine learning regression of electronic structure properties for 2D materials. Sci. Rep. 2023, 13, 5426.
47. Fung, V.; Zhang, J.; Hu, G.; Ganesh, P.; Sumpter, B. G. Inverse design of two-dimensional materials with invertible neural networks. npj. Comput. Mater. 2021, 7, 670.
48. Lu, S.; Zhou, Q.; Guo, Y.; Zhang, Y.; Wu, Y.; Wang, J. Coupling a crystal graph multilayer descriptor to active learning for rapid discovery of 2D ferromagnetic semiconductors/half-metals/metals. Adv. Mater. 2020, 32, e2002658.
49. Zhuo, Y.; Mansouri, T. A.; Oliynyk, A. O.; Duke, A. C.; Brgoch, J. Identifying an efficient, thermally robust inorganic phosphor host via machine learning. Nat. Commun. 2018, 9, 4377.
50. Wang, Z.; Yang, M.; Xie, X.; et al. Applications of machine learning in perovskite materials. Adv. Compos. Hybrid. Mater. 2022, 5, 2700-20.
51. Shen, H.; Wu, J.; Chen, Z.; et al. First-principles study combined with interpretable machine-learning models of bayesian optimization for the design of ultrawide bandgap double perovskites. J. Phys. Chem. C. 2023, 127, 21410-22.
52. Batista, G. E. A. P. A.; Prati, R. C.; Monard, M. C. A study of the behavior of several methods for balancing machine learning training data. SIGKDD. Explor. Newsl. 2004, 6, 20-9.
53. Chawla, N. V. ; Bowyer KW.; Hall LO.;Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321-57.
54. Pedregosa, F. ; Varoquaux G.; Gramfort A, et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825-30.
56. Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. , 46, 389-422.
58. Clark, S. J.; Segall, M. D.; Pickard, C. J.; et al. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567-70.
59. Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1045-97.
60. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. Condens. Matter. 1996, 54, 11169-86.
61. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999, 59, 1758-75.
62. Pfrommer, B. G.; Côté, M.; Louie, S. G.; Cohen, M. L. Relaxation of crystals with the quasi-newton method. J. Comput. Phys. 1997, 131, 233-40.
63. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976, 13, 5188-92.
64. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207-15.
65. Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106.
66. Refson, K.; Tulip, P. R.; Clark, S. J. Variational density-functional perturbation theory for dielectrics and lattice dynamics. Phys. Rev. B. 2006, 73.
67. Baroni, S.; de, G. S.; Dal, C. A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515-62.
68. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272-6.
69. Leeuwen R. Mapping from densities to potentials in time-dependent density-functional theory. Phys. Rev. Lett. 1999, 82, 3863-6.
70. Kühne, T. D.; Iannuzzi, M.; Del, B. M.; et al. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 2020, 152, 194103.
71. Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-92.
72. Jain, A.; Hautier, G.; Moore, C. J.; et al. A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 2011, 50, 2295-310.
73. Borlido, P.; Aull, T.; Huran, A. W.; Tran, F.; Marques, M. A. L.; Botti, S. Large-scale benchmark of exchange-correlation functionals for the determination of electronic band gaps of solids. J. Chem. Theory. Comput. 2019, 15, 5069-79.
74. Yang, J.; Liu, K.; Chen, X.; Shen, D. Recent advances in optoelectronic and microelectronic devices based on ultrawide-bandgap semiconductors. Prog. Quantum. 2022, 83, 100397.
75. Yin, Y.; Wang, A.; Sun, Z.; Xin, C.; Jin, G. Machine learning regression model for predicting the band gap of multi-elements nonlinear optical crystals. Comput. Mater. Sci. 2024, 242, 113109.
76. Chen, X.; Lu, S.; Chen, Q.; Zhou, Q.; Wang, J. From bulk effective mass to 2D carrier mobility accurate prediction via adversarial transfer learning. Nat. Commun. 2024, 15, 5391.
77. Biswas, M.; Nishinaka, H. Thermodynamically metastable α-, ε- (or κ-), and γ-Ga2O3: From material growth to device applications. APL. Materials. 2022, 10, 060701.
78. Gladkikh, V.; Kim, D. Y.; Hajibabaei, A.; Jana, A.; Myung, C. W.; Kim, K. S. Machine learning for predicting the band gaps of ABX3 perovskites from elemental properties. J. Phys. Chem. C. 2020, 124, 8905-18.
79. Fowler, W. B. Influence of electronic polarization on the optical properties of insulators. Phys. Rev. 1966, 151, 657-67.
80. Curtarolo, S.; Setyawan, W.; Hart, G. L.; et al. AFLOW: An automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 2012, 58, 218-26.
81. Zagorac, D.; Müller, H.; Ruehl, S.; Zagorac, J.; Rehme, S. Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features. J. Appl. Crystallogr. 2019, 52, 918-25.
82. Becke, A. D.; Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397-403.
83. Su, J.; Guo, R.; Lin, Z.; et al. Unusual electronic and optical properties of two-dimensional Ga2O3 predicted by density functional theory. J. Phys. Chem. C. 2018, 122, 24592-9.
84. Anam, B.; Gaston, N. Structural, thermal, and electronic properties of two-dimensional gallium oxide (β-Ga2O3) from first-principles design. Chemphyschem 2021, 22, 2362-70.
85. Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932-4.