REFERENCES

1. Li, X.; Wei, Y.; Lu, L.; Lu, K.; Gao, H. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 2010, 464, 877-80.

2. Shi, P.; Li, R.; Li, Y.; et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science 2021, 373, 912-8.

3. Mu, Y.; He, L.; Deng, S.; et al. A high-entropy alloy with dislocation-precipitate skeleton for ultrastrength and ductility. Acta. Mater. 2022, 232, 117975.

4. Nie, J.; Wei, L.; Li, D.; Zhao, L.; Jiang, Y.; Li, Q. High-throughput characterization of microstructure and corrosion behavior of additively manufactured SS316L-SS431 graded material. Addit. Manuf. 2020, 35, 101295.

5. Pegues, J. W.; Melia, M. A.; Puckett, R.; Whetten, S. R.; Argibay, N.; Kustas, A. B. Exploring additive manufacturing as a high-throughput screening tool for multiphase high entropy alloys. Addit. Manuf. 2021, 37, 101598.

6. Fang, T. H.; Li, W. L.; Tao, N. R.; Lu, K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 2011, 331, 1587-90.

7. Cheng, Z.; Zhou, H.; Lu, Q.; Gao, H.; Lu, L. Extra strengthening and work hardening in gradient nanotwinned metals. Science 2018, 362, eaau1925.

8. Kelly, S. M.; Kampe, S. L. Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part II. Thermal modeling. Metall. Mater. Trans. A. 2004, 35, 1869-79.

9. Kok, Y.; Tan, X.; Wang, P.; et al. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review. Mater. Des. 2018, 139, 565-86.

10. Wang, Z.; Wang, L.; Duan, S.; Li, Y. An image denoising method based on deep residual GAN. J. Phys. Conf. Ser. 2020, 1550, 032127.

11. Singla, K.; Pandey, R.; Ghanekar, U. A review on single image super resolution techniques using generative adversarial network. Optik 2022, 266, 169607.

12. Yang, W.; Zhang, X.; Tian, Y.; Wang, W.; Xue, J.; Liao, Q. Deep learning for single image super-resolution: a brief review. IEEE. Trans. Multimedia. 2019, 21, 3106-21.

13. Chauhan, K.; Patel, S. N.; Kumhar, M.; et al. Deep learning-based single-image super-resolution: a comprehensive review. IEEE. Access. 2023, 11, 21811-30.

14. Chen, H.; He, X.; Qing, L.; et al. Real-world single image super-resolution: a brief review. Inform. Fusion. 2022, 79, 124-45.

15. Li, K.; Yang, S.; Dong, R.; Wang, X.; Huang, J. Survey of single image super-resolution reconstruction. IET. Image. Process. 2020, 14, 2273-90.

16. Lepcha, D. C.; Goyal, B.; Dogra, A.; Goyal, V. Image super-resolution: a comprehensive review, recent trends, challenges and applications. Inform. Fusion. 2023, 91, 230-60.

17. Dong, C.; Loy, C. C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE. Trans. Pattern. Anal. Mach. Intell. 2016, 38, 295-307.

18. Kim, J.; Lee, J. K.; Lee, K. M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 27-30 June 2016; Las Vegas, NV, USA.

19. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 21-26 July 2017; Honolulu, HI, USA.

20. Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors, Computer Vision - ECCV 2018, Lecture Notes in Computer Science. Cham: Springer International Publishing; 2018. pp. 294-310.

21. Liang, J.; Cao, J.; Sun, G.; Zhang, K.; Van, G. L.; Timofte, R. SwinIR: image restoration using swin transformer. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW); 11-17 October 2021; Montreal, BC, Canada.

22. Zhang, S.; Liang, G.; Pan, S.; Zheng, L. A fast medical image super resolution method based on deep learning network. IEEE. Access. 2019, 7, 12319-27.

23. Li, Y.; Sixou, B.; Peyrin, F. A review of the deep learning methods for medical images super resolution problems. IRBM. 2021, 42, 120-33.

24. Sood, R.; Topiwala, B.; Choutagunta, K.; Sood, R.; Rusu, M. An application of generative adversarial networks for super resolution medical imaging. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA); 17-20 December 2018; Orlando, FL, USA.

25. Liu, H.; Xu, J.; Wu, Y.; Guo, Q.; Ibragimov, B.; Xing, L. Learning deconvolutional deep neural network for high resolution medical image reconstruction. Inf. Sci. 2018, 468, 142-54.

26. Wang, P.; Bayram, B.; Sertel, E. A comprehensive review on deep learning based remote sensing image super-resolution methods. Earth-Sci. Rev. 2022, 232, 104110.

27. Li, Z.; Shen, H.; Cheng, Q.; Liu, Y.; You, S.; He, Z. Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors. ISPRS. J. Photogramm. Remote. Sens. 2019, 150, 197-212.

28. Lei, S.; Shi, Z.; Zou, Z. Super-resolution for remote sensing images via local-global combined network. IEEE. Geosci. Remote. Sensing. Lett. 2017, 14, 1243-7.

29. Furat, O.; Finegan, D. P.; Yang, Z.; Kirstein, T.; Smith, K.; Schmidt, V. Super-resolving microscopy images of Li-ion electrodes for fine-feature quantification using generative adversarial networks. NPJ. Comput. Mater. 2022, 8, 749.

30. Jangid, D. K.; Brodnik, N. R.; Goebel, M. G.; et al. Adaptable physics-based super-resolution for electron backscatter diffraction maps. NPJ. Comput. Mater. 2022, 8, 924.

31. Yin, W.; Brittain, D.; Borseth, J.; et al. A petascale automated imaging pipeline for mapping neuronal circuits with high-throughput transmission electron microscopy. Nat. Commun. 2020, 11, 4949.

32. Ma, B.; Ban, X.; Huang, H.; et al. A fast algorithm for material image sequential stitching. Comput. Mater. Sci. 2019, 158, 1-13.

33. Yang, F.; Deng, Z. S.; Fan, Q. H. A method for fast automated microscope image stitching. Micron 2013, 48, 17-25.

34. Kaynig, V.; Fischer, B.; Müller, E.; Buhmann, J. M. Fully automatic stitching and distortion correction of transmission electron microscope images. J. Struct. Biol. 2010, 171, 163-73.

35. Chalfoun, J.; Majurski, M.; Blattner, T.; et al. MIST: accurate and scalable microscopy image stitching tool with stage modeling and error minimization. Sci. Rep. 2017, 7, 4988.

36. Singla, A.; Lippmann, B.; Graeb, H. Recovery of 2D and 3D layout information through an advanced image stitching algorithm using scanning electron microscope images. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR); 10-15 January 2021; Milan, Italy.

37. Ma, B.; Zimmermann, T.; Rohde, M.; et al. Use of autostitch for automatic stitching of microscope images. Micron 2007, 38, 492-9.

38. Wang, X.; Yu, K.; Wu, S.; et al. ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé L, Roth S, editors, Computer Vision - ECCV 2018 Workshops, Lecture Notes in Computer Science. Cham: Springer International Publishing; 2019. pp. 63-79.

39. Goodfellow, L. J.; Pouget-Abadie, J.; Mirza, M.; et al. Generative adversarial nets. Available from: https://papers.nips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf [Last accessed on 3 Jan 2025].

40. Ronneberger, O.; Fischer, P.; Brox, T. U-net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science. Cham: Springer International Publishing; 2015. pp. 234-41.

41. Miyato, T.; Kataoka, T.; Koyama, M.; Yoshida, Y. Spectral normalization for generative adversarial networks. In Proceedings of the International Conference on Learning Representations. arXiv2018.

42. Lu, Y.; Dong, Y.; Guo, S.; et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci. Rep. 2014, 4, 6200.

43. Gao, X.; Lu, Y.; Zhang, B.; et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta. Mater. 2017, 141, 59-66.

44. Yan, P.; Chang, J.; Wang, W.; Zhu, X.; Lin, M.; Wei, B. Eutectic growth kinetics and microscopic mechanical properties of rapidly solidified CoCrFeNiMo0.8 high entropy alloy. Acta. Mater. 2022, 237, 118149.

45. Vikram, R.; Gupta, K.; Suwas, S. Design of a new cobalt base nano-lamellar eutectic high entropy alloy. Scr. Mater. 2021, 202, 113993.

46. Wischi, M.; Campo, K.; Starck, L.; da, F. E.; Lopes, É.; Caram, R. Microstructure and mechanical behavior of the directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy. J. Mater. Res. Technol. 2022, 20, 811-20.

47. Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE. Trans. Pattern. Anal. Mach. Intell. 2017, 39, 640-51.

48. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV); 22-29 October 2017; Venice, Italy.

49. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE. Trans. Pattern. Anal. Mach. Intell. 2017, 39, 2481-95.

50. Wen, Q.; Yang, J.; Yang, X.; Liang, K. PatchDCT: patch refinement for high quality instance segmentation. arXiv 2023.

51. Bochkovskiy, A.; Wang, C. Y.; Liao, H. Y. M. YOLOv4: optimal speed and accuracy of object detection. arXiv 2024.

52. Zhou, Z.; Rahman, S. M. M.; Tajbakhsh, N.; Liang, J. UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov D, Taylor Z, Carneiro G, et al., editors. Deep learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer International Publishing; 2018. pp. 3-11.

53. Bradley, D.; Roth, G. Adaptive thresholding using the integral image. J. Grap. Tools. 2007, 12, 13-21.

54. Wani, I. S.; Bhattacharjee, T.; Sheikh, S.; et al. Ultrafine-grained AlCoCrFeNi2.1 eutectic high-entropy alloy. Mater. Res. Lett. 2016, 4, 174-9.

55. Nassar, A.; Mullis, A.; Cochrane, R.; Aslam, Z.; Micklethwaite, S.; Cao, L. Rapid solidification of AlCoCrFeNi2.1 high-entropy alloy. J. Alloys. Compd. 2022, 900, 163350.

56. Schuh, C. A. Nanoindentation studies of materials. Mater. Today. 2006, 9, 32-40.

57. Karimzadeh, A.; Koloor, S. S. R.; Ayatollahi, M. R.; Bushroa, A. R.; Yahya, M. Y. Assessment of nano-indentation method in mechanical characterization of heterogeneous nanocomposite materials using experimental and computational approaches. Sci. Rep. 2019, 9, 15763.

58. Miller, M.; Bobko, C.; Vandamme, M.; Ulm, F. Surface roughness criteria for cement paste nanoindentation. Cement. Concrete. Res. 2008, 38, 467-76.

59. Zhang, R.; Isola, P.; Efros, A. A.; Shechtman, E.; Wang, O. The unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition; 18-23 June 2018; Salt Lake City, UT, USA.

60. Jiang, K.; Wang, R.; Xiao, Y.; Jiang, J.; Xu, X.; Lu, T. Image enhancement via associated perturbation removal and texture reconstruction learning. IEEE/CAA. J. Autom. Sin. 2024, 11, 2253-69.

61. Tian, C.; Zheng, M.; Lin, C.; Li, Z.; Zhang, D. Heterogeneous window transformer for image denoising. IEEE. Trans. Syst. Man. Cybern. Syst. 2024, 54, 6621-32.

62. He, S.; Yang, Y.; Li, Z.; et al. A general strategy for high-throughput experimental screening of promising bulk thermoelectric materials. Sci. China. Mater. 2021, 64, 1751-60.

63. Shi, P.; Zhong, Y.; Li, Y.; et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys. Mater. Today. 2020, 41, 62-71.

64. Shi, P.; Ren, W.; Zheng, T.; et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat. Commun. 2019, 10, 489.

65. Wada, K.; Mpitid; Buijs, M. wkentaro/labelme: v4.6.0. Available from: https://zenodo.org/records/5711226 [Last accessed on 21 Jan 2025].

66. Kingma, D. P.; Ba, J. Adam: a method for stochastic optimization. arXiv 2024.

67. BasicSR: open source image and video restoration toolbox; 2022. Available from: https://github.com/XPixelGroup/BasicSR [Last accessed on 3 Jan 2025].

68. Russakovsky, O.; Deng, J.; Su, H.; et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211-52.

69. Milletari, F.; Navab, N.; Ahmadi, S. A. V-net: fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV); 25-28 October 2016; Stanford, CA, USA.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/