REFERENCES
1. Dantas, T. A.; Carneiro, N. J. P.; Alves, J. L.; Vaz, P. C. S.; Silva, F. S. In silico evaluation of the stress fields on the cortical bone surrounding dental implants: comparing root-analogue and screwed implants. J. Mech. Behav. Biomed. Mater. 2020, 104, 103667.
2. Smith, E. E.; Angstadt, S.; Monteiro, N.; Zhang, W.; Khademhosseini, A.; Yelick, P. C. Bioengineered tooth buds exhibit features of natural tooth buds. J. Dent. Res. 2018, 97, 1144-51.
3. Janto, M.; Iurcov, R.; Daina, C. M.; et al. Oral health among elderly, impact on life quality, access of elderly patients to oral health services and methods to improve oral health: a narrative review. J. Pers. Med. 2022, 12, 372.
4. Xu, K.; Yu, W.; Li, Y.; et al. Association between tooth loss and hypertension: a systematic review and meta-analysis. J. Dent. 2022, 123, 104178.
5. Schröter, L.; Kaiser, F.; Küppers, O.; et al. Improving bone defect healing using magnesium phosphate granules with tailored degradation characteristics. Dent. Mater. 2024, 40, 508-19.
6. Sivakumar, P. M.; Yetisgin, A. A.; Demir, E.; Sahin, S. B.; Cetinel, S. Polysaccharide-bioceramic composites for bone tissue engineering: a review. Int. J. Biol. Macromol. 2023, 250, 126237.
7. Fujisawa, K.; Akita, K.; Fukuda, N.; et al. Compositional and histological comparison of carbonate apatite fabricated by dissolution-precipitation reaction and Bio-Oss®. J. Mater. Sci. Mater. Med. 2018, 29, 121.
8. Rohr, N.; Brunner, C.; Bellon, B.; Fischer, J.; de, W. M. Characterization of a cotton-wool like composite bone graft material. J. Mater. Sci. Mater. Med. 2022, 33, 61.
9. Huh, J. B.; Yang, J. J.; Choi, K. H.; et al. Effect of rhBMP-2 immobilized anorganic bovine bone matrix on bone regeneration. Int. J. Mol. Sci. 2015, 16, 16034-52.
10. Wang, S.; Li, R.; Xia, D.; et al. The impact of Zn-doped synthetic polymer materials on bone regeneration: a systematic review. Stem. Cell. Res. Ther. 2021, 12, 123.
11. Ciszyński, M.; Dominiak, S.; Dominiak, M.; Gedrange, T.; Hadzik, J. Allogenic bone graft in dentistry: a review of current trends and developments. Int. J. Mol. Sci. 2023, 24, 16598.
12. Müller, V.; Djurado, E. Microstructural designed S58 bioactive glass/ hydroxyapatite composites for enhancing osteointegration of Ti6Al4V-based implants. Ceram. Int. 2022, 48, 35365-75.
13. Ryan, E. J.; Ryan, A. J.; González-Vázquez, A.; et al. Collagen scaffolds functionalised with copper-eluting bioactive glass reduce infection and enhance osteogenesis and angiogenesis both in vitro and in vivo. Biomaterials 2019, 197, 405-16.
14. Polo-Montalvo, A.; Casarrubios, L.; Serrano, M. C.; et al. Effective actions of ion release from mesoporous bioactive glass and macrophage mediators on the differentiation of osteoprogenitor and endothelial progenitor cells. Pharmaceutics 2021, 13, 1152.
15. Bose, S.; Bhattacharjee, A.; Banerjee, D.; Boccaccini, A. R.; Bandyopadhyay, A. Influence of random and designed porosities on 3D printed tricalcium phosphate-bioactive glass scaffolds. Addit. Manuf. 2021, 40, 101895.
16. Jones, J. R. Review of bioactive glass: from hench to hybrids. Acta. Biomater. 2013, 9, 4457-86.
17. Wang, G.; Lv, Z.; Wang, T.; et al. Surface functionalization of hydroxyapatite scaffolds with mgaleu-LDH nanosheets for high-performance bone regeneration. Adv. Sci. 2022, 10, e2204234.
18. Vallet-Regi, M.; Salinas, A. J. Mesoporous bioactive glasses for regenerative medicine. Mater. Today. Bio. 2021, 11, 100121.
19. Sheng, X.; Li, C.; Wang, Z.; et al. Advanced applications of strontium-containing biomaterials in bone tissue engineering. Mater. Today. Bio. 2023, 20, 100636.
20. Li, Y.; Chen, L.; Chen, X.; et al. High phosphate content in bioactive glasses promotes osteogenesis in vitro and in vivo. Dent. Mater. 2021, 37, 272-83.
21. Dai, Q.; Li, Q.; Gao, H.; et al. 3D printing of Cu-doped bioactive glass composite scaffolds promotes bone regeneration through activating the HIF-1α and TNF-α pathway of hUVECs. Biomater. Sci. 2021, 9, 5519-32.
22. Signorelli, G. C.; Bianchetti, M. G.; Jermini, L. M. M.; et al. Dietary chloride deficiency syndrome: pathophysiology, history, and systematic literature review. Nutrients 2020, 12, 3436.
23. Chen, X.; Karpukhina, N.; Brauer, D. S.; Hill, R. G. Novel highly degradable chloride containing bioactive glasses. Biomedical. Glasses. 2015, 1.
24. Chen, X.; Chen, X.; Pedone, A.; Apperley, D.; Hill, R. G.; Karpukhina, N. New insight into mixing fluoride and chloride in bioactive silicate glasses. Sci. Rep. 2018, 8, 1316.
25. Chen, X.; Liu, Y.; Zhao, Y.; et al. Halide-containing bioactive glasses enhance osteogenesis in vitro and in vivo. Biomater. Adv. 2022, 143, 213173.
26. Cortez, P. P.; Brito, A. F.; Kapoor, S.; et al. The in vivo performance of an alkali-free bioactive glass for bone grafting, FastOs® BG, assessed with an ovine model. J Biomed Mater Res B Appl Biomater 2017;105:30-8.[DOI:10.1002/jbm.b.33529] Caution!
27. Tajvar, S.; Hadjizadeh, A.; Samandari, S. S. Scaffold degradation in bone tissue engineering: an overview. Int. Biodeterior. Biodegrad. 2023, 180, 105599.
28. Lee, I.; Shin, S.; Foroutan, F.; Lakhkar, N. J.; Gong, M.; Knowles, J. C. Effects of magnesium content on the physical, chemical and degradation properties in a MgO-CaO-Na2O-P2O5 glass system. J. Non-Cryst. Solids. 2013, 363, 57-63.
29. Wetzel, R.; Bartzok, O.; Brauer, D. S. Influence of low amounts of zinc or magnesium substitution on ion release and apatite formation of bioglass 45S5. J. Mater. Sci. Mater. Med. 2020, 31, 86.
30. Alawi AM, Majoni SW, Falhammar H. Magnesium and human health: perspectives and research directions. Int. J. Endocrinol. 2018, 2018, 9041694.
31. Nielsen, F. H. Magnesium deficiency and increased inflammation: current perspectives. J. Inflamm. Res. 2018, 11, 25-34.
32. Hohenbild, F.; Arango, O. M.; Schmitz, S. I.; Moghaddam, A.; Boccaccini, A. R.; Westhauser, F. An in vitro evaluation of the biological and osteogenic properties of magnesium-doped bioactive glasses for application in bone tissue engineering. Int. J. Mol. Sci. 2021, 22, 12703.
33. Dai, Q.; Wang, Z.; Liu, C.; Chen, X.; Cao, X. High performance injectable Mg doped bioactive glass bone cement for the regulation of osteogenic immune microenvironment. Biomater. Adv. 2024, 160, 213864.
34. Chen, X.; Wang, M.; Kenny, C.; Chen, X.; Karpukhina, N.; Hill, R. G. Novel fluoride- and chloride-containing bioactive glasses for use in air abrasion. J. Dent. 2022, 125, 104252.
35. Zeng, Y.; Deng, J. J.; Jiang, Q. L.; et al. Thyrotropin inhibits osteogenic differentiation of human periodontal ligament stem cells. J. Periodontal. Res. 2023, 58, 668-78.
36. Han, Y.; Liu, C.; Chen, B.; et al. Orchestrated tumor apoptosis (Cu2+) and bone tissue calcification (Ca2+) by hierarchical copper/calcium-ensembled bioactive silica for osteosarcoma therapy. Chem. Eng. J. 2022, 435, 134820.
37. Chen, X.; Chen, X.; Brauer, D. S.; et al. Sodium is not essential for high bioactivity of glasses. Int. J. Appl. Glass. Sci. 2017, 8, 428-37.
38. Kim, J.; Gilbert, J. L. The effect of cell density, proximity, and time on the cytotoxicity of magnesium and galvanically coupled magnesium-titanium particles in vitro. J. Biomed. Mater. Res. A. 2018, 106, 1428-39.
39. Martin, D.; Cooper, S. B.; Tang, J. C. Y.; Fraser, W. D.; Sale, C.; Elliott-Sale, K. J. Bone metabolic marker concentrations across the menstrual cycle and phases of combined oral contraceptive use. Bone 2021, 145, 115864.
40. Zhong, Y.; Liu, C.; Yan, X.; Li, X.; Chen, X.; Mai, S. Odontogenic and anti-inflammatory effects of magnesium-doped bioactive glass in vital pulp therapy. Biomed. Mater. 2024, 19.
41. Lin, S.; Cao, L.; Wang, Q.; et al. Tailored biomimetic hydrogel based on a photopolymerised DMP1/MCF/gelatin hybrid system for calvarial bone regeneration. J. Mater. Chem. B. 2018, 6, 414-27.
42. Chu, W.; Li, T.; Jia, G.; et al. Exposure to high levels of magnesium disrupts bone mineralization in vitro and in vivo. Ann. Transl. Med. 2020, 8, 1419.
43. Khotib, J.; Marhaeny, H. D.; Miatmoko, A.; et al. Differentiation of osteoblasts: the links between essential transcription factors. J. Biomol. Struct. Dyn. 2023, 41, 10257-76.
44. Gomathi, K.; Akshaya, N.; Srinaath, N.; Moorthi, A.; Selvamurugan, N. Regulation of Runx2 by post-translational modifications in osteoblast differentiation. Life. Sci. 2020, 245, 117389.
45. Burger, M. G.; Grosso, A.; Briquez, P. S.; et al. Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration. Acta. Biomater. 2022, 149, 111-25.
46. Li, X.; Wang, M.; Zhang, W.; et al. A magnesium-incorporated nanoporous titanium coating for rapid osseointegration. Int. J. Nanomedicine. 2020, 15, 6593-603.
47. Wang, J.; Yang, B.; Guo, S.; Yu, S.; Li, H. Manufacture of titanium alloy materials with bioactive sandblasted surfaces and evaluation of osseointegration properties. Front. Bioeng. Biotechnol. 2023, 11, 1251947.
48. Cheng, C.; Chaaban, M.; Born, G.; et al. Repair of a rat mandibular bone defect by hypertrophic cartilage grafts engineered from human fractionated adipose tissue. Front. Bioeng. Biotechnol. 2022, 10, 841690.
49. Zhao, D.; Wang, X.; Cheng, B.; et al. Degradation-kinetics-controllable and tissue-regeneration-matchable photocross-linked alginate hydrogels for bone repair. ACS. Appl. Mater. Interfaces. 2022, 14, 21886-905.
50. Lioubavina-Hack, N.; Carmagnola, D.; Lynch, S. E.; Karring, T. Effect of Bio-Oss® with or without platelet-derived growth factor on bone formation by “guided tissue regeneration”: a pilot study in rats. J. Clin. Periodontol. 2005, 32, 1254-60.
51. Jithendra, P.; Mohamed, J. M. M.; Annamalai, D.; et al. Biopolymer collagen-chitosan scaffold containing aloe vera for chondrogenic efficacy on cartilage tissue engineering. Int. J. Biol. Macromol. 2023, 248, 125948.
52. Ge, R.; Xun, C.; Yang, J.; Jia, W.; Li, Y. In vivo therapeutic effect of wollastonite and hydroxyapatite on bone defect. Biomed. Mater. 2019, 14, 065013.
53. Wang, L.; Wan, L.; Zhang, T.; et al. A combined treatment of BMP2 and soluble VEGFR1 for the enhancement of tendon-bone healing by regulating injury-activated skeletal stem cell lineage. Am. J. Sports. Med. 2024, 52, 779-90.
54. Sahin, E.; Orhan, C.; Balci, T. A.; Erten, F.; Sahin, K. Magnesium picolinate improves bone formation by regulation of RANK/RANKL/OPG and BMP-2/Runx2 signaling pathways in high-fat fed Rats. Nutrients 2021, 13, 3353.
55. Zhang, J.; Tang, L.; Qi, H.; Zhao, Q.; Liu, Y.; Zhang, Y. Dual function of magnesium in bone biomineralization. Adv. Healthc. Mater. 2019, 8, e1901030.
56. Sun, Y.; Helmholz, H.; Willumeit-römer, R. Systemic modulation of skeletal mineralization by magnesium implant promoting fracture healing: radiological exploration enhanced with PCA-based machine learning in a rat femoral model. J. Magnes. Alloys. 2024, 12, 1009-20.
57. Sayed, A. S.; El-Saadany, H. M.; Kotb, G. A. M.; et al. Biosafety evaluation of two beauveria bassiana products on female albino rats using acute oral test. Saudi. J. Biol. Sci. 2022, 29, 103293.
58. Tan, G.; Chen, R.; Tu, X.; et al. Research on the osteogenesis and biosafety of ECM-loaded 3D-printed Gel/SA/58sBG scaffolds. Front. Bioeng. Biotechnol. 2022, 10, 973886.
59. Yang, Z.; Liu, X.; Zhao, F.; et al. Bioactive glass nanoparticles inhibit osteoclast differentiation and osteoporotic bone loss by activating lncRNA NRON expression in the extracellular vesicles derived from bone marrow mesenchymal stem cells. Biomaterials 2022, 283, 121438.