REFERENCES
1. Miller, M. K.; Russell, K. F.; Thompson, G. B. Strategies for fabricating atom probe specimens with a dual beam FIB. Ultramicroscopy 2005, 102, 287-98.
2. Thompson, K.; Lawrence, D.; Larson, D. J.; Olson, J. D.; Kelly, T. F.; Gorman, B. In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 2007, 107, 131-9.
3. Saxey, D. W.; Cairney, J. M.; McGrouther, D.; Honma, T.; Ringer, S. P. Atom probe specimen fabrication methods using a dual FIB/SEM. Ultramicroscopy 2007, 107, 756-60.
4. Gault, B.; Moody, M. P.; Cairney, J. M.; Ringer, S. P. Atom probe microscopy. In: Atom Probe Microscopy. Springer Series in Materials Science. New York: Springer, NY. 2012.pp.299-31.
5. Gault, B.; Chiaramonti, A.; Cojocaru-Mirédin, O.; et al. Atom probe tomography. Nat. Rev. Methods. Primers. 2021, 1, 51.
6. Geuser F, Gault B. Metrology of small particles and solute clusters by atom probe tomography. Acta. Materialia. 2020, 188, 406-15.
7. Chen, Y. S.; Lu, H.; Liang, J.; et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates. Science 2020, 367, 171-5.
8. Prosa, T. J.; Larson, D. J. Modern focused-ion-beam-based site-specific specimen preparation for atom probe tomography. Microsc. Microanal. 2017, 23, 194-209.
9. Bas, P.; Bostel, A.; Deconihout, B.; Blavette, D. A general protocol for the reconstruction of 3D atom probe data. Appl. Surf. Sci. 1995, 87-88, 298-304.
10. Chang, A. S.; Lauhon, L. J. Atom probe tomography of nanoscale architectures in functional materials for electronic and photonic applications. Curr. Opin. Solid. State. Mater. Sci. 2018, 22, 171-87.
11. Sun, Z.; Hazut, O.; Yerushalmi, R.; Lauhon, L. J.; Seidman, D. N. Criteria and considerations for preparing atom-probe tomography specimens of nanomaterials utilizing an encapsulation methodology. Ultramicroscopy 2018, 184, 225-33.
12. Yang, Q.; Danaie, M.; Young, N.; et al. Atom probe tomography of Au-Cu bimetallic nanoparticles synthesized by inert gas condensation. J. Phys. Chem. C. 2019, 123, 26481-9.
13. Yu, B.; Ayvalı, T.; Raine, E.; et al. Enhanced propylene oxide selectivity for gas phase direct propylene epoxidation by lattice expansion of silver atoms on nickel nanoparticles. Appl. Catal. B:. Environ. 2019, 243, 304-12.
14. Jiang, K.; Back, S.; Akey, A. J.; et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 2019, 10, 3997.
15. Wang, Z.; Li, T.; Jiang, Y.; et al. Acidity enhancement through synergy of penta-and tetra-coordinated aluminum species in amorphous silica networks. Nat. Commun. 2020, 11, 225.
16. Wilde, P.; Dieckhofer, S.; Quast, T.; et al. Insights into the formation, chemical stability, and activity of transient NiyP@NiOx core-shell heterostructures for the oxygen evolution reaction. ACS. Appl. Energy. Mater. 2020, 3, 2304-9.
17. Lawrence, D.; Alvis, R.; Olson, D. Specimen preparation for cross-section atom probe analysis. Microsc. Microanal. 2008, 14, 1004-5.
18. Devaraj, A.; Perea, D. E.; Liu, J.; et al. Three-dimensional nanoscale characterisation of materials by atom probe tomography. Int. Mater. Rev. 2018, 63, 68-101.
19. Eder, K.; Bhatia, V.; Van, L. B.; Cairney, J. M. Using a plasma FIB equipped with Xe, N2, O2 and Ar for atom probe sample preparation - ion implantation and success rates. Microsc. Microanal. 2019, 25, 316-7.
20. Halpin, J. E.; Webster, R. W. H.; Gardner, H.; Moody, M. P.; Bagot, P. A. J.; MacLaren, D. A. An in-situ approach for preparing atom probe tomography specimens by xenon plasma-focussed ion beam. Ultramicroscopy 2019, 202, 121-7.
21. Felfer, P.; Li, T.; Eder, K.; et al. New approaches to nanoparticle sample fabrication for atom probe tomography. Ultramicroscopy 2015, 159 Pt 2, 413-9.
22. Felfer, P.; Benndorf, P.; Masters, A.; Maschmeyer, T.; Cairney, J. M. Revealing the distribution of the atoms within individual bimetallic catalyst nanoparticles. Angew. Chem. Int. Ed. 2014, 53, 11190-3.
23. Kim, S. H.; Kang, P. W.; Park, O. O.; et al. A new method for mapping the three-dimensional atomic distribution within nanoparticles by atom probe tomography (APT). Ultramicroscopy 2018, 190, 30-8.
24. Kim, S. H.; Lee, J. Y.; Ahn, J. P.; Choi, P. P. Fabrication of atom probe tomography specimens from nanoparticles using a fusible Bi-In-Sn alloy as an embeddingmedium. Microsc. Microanal. 2019, 25, 438-46.
25. Mosiman, D. S.; Chen, Y. S.; Yang, L.; et al. Atom probe tomography of encapsulated hydroxyapatite nanoparticles. Small. Methods. 2021, 5, e2000692.
26. Qu, J.; Ringer, S.; Zheng, R. Atomic-scale tomography of semiconductor nanowires. Mater. Sci. Semicond. Process. 2015, 40, 896-909.
27. Vurpillot, F.; Larson, D.; Cerezo, A. Improvement of multilayer analyses with a three-dimensional atom probe. Surf. Interface. Anal. 2004, 36, 552-8.
28. Brons, J.; Herzing, A.; Henry, K.; Anderson, I.; Thompson, G. Comparison of atom probe compositional fidelity across thin film interfaces. Thin. Solid. Films. 2014, 551, 61-7.
29. Op, B. J.; Scheerder, J. E.; Geiser, B. P.; et al. The prospect of spatially accurate reconstructed atom probe data using experimental emitter shapes. Microsc. Microanal. 2022, 28, 1141-9.
30. Larson, D. J.; Prosa, T. J.; Geiser, B. P.; Egelhoff, W. F. J. Effect of analysis direction on the measurement of interfacial mixing in thin metal layers with atom probe tomography. Ultramicroscopy 2011, 111, 506-11.
31. Garbrecht, M.; Mccarroll, I.; Yang, L.; et al. Thermally stable epitaxial ZrN/carrier-compensated Sc0.99Mg0.01N metal/semiconductor multilayers for thermionic energy conversion. J. Mater. Sci. 2020, 55, 1592-602.
32. Marquis, E. A.; Geiser, B. P.; Prosa, T. J.; Larson, D. J. Evolution of tip shape during field evaporation of complex multilayer structures. J. Microsc. 2011, 241, 225-33.
33. Prosa, T.; Lawrence, D.; Olson, D.; Larson, D.; Marquis, E. Backside lift-out specimen preparation: reversing the analysis direction in atom probe tomography. Microsc. Microanal. 2009, 15, 298-9.