1. Knoll M, Ruska E. Das Elektronenmikroskop. Z Physik 1932;78:318-39.
3. Whelan MJ. A high temperature stage for the Elmiskop I. In: Bargmann W, Möllenstedt G, Niehrs H, Peters D, Ruska E, Wolpers C, editors. Verhandlungen. Berlin: Springer Berlin Heidelberg; 1960. p. 96-100.
4. Butler EP. In situ experiments in the transmission electron microscope. Rep Prog Phys 1979;42:833-95.
5. Martin CJ, Boyd JD. A method for calibrating a specimen-heating stage in the electron microscope. J Phys E: Sci Instrum 1973;6:21-2.
9. Tejada A, den Dekker AJ. A comparison between minimum variance control and other online compensation methods for specimen drift in transmission electron microscopy. Multidim Syst Sign Process 2014;25:247-71.
10. Baker R, Feates F, Harris P. Continuous electron microscopic observation of carbonaceous deposits formed on graphite and silica surfaces. Carbon 1972;10:93-6.
11. Baker R. Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. Journal of Catalysis 1972;26:51-62.
12. Baker RTK, Harris PS. Controlled atmosphere electron microscopy. J Phys E: Sci Instrum 1972;5:793-7.
13. Fujita H, Komatsu M, Ishikawa I. A universal environmental cell for a 3MV-class electron microscope and its applications to metallurgical subjects. Jpn J Appl Phys 1976;15:2221-8.
14. Hashimoto H, Naiki T, Eto T, Fujiwara K. High temperature gas reaction specimen chamber for an electron microscope. Jpn J Appl Phys 1968;7:946.
15. Hiziya K, Hashimoto H, Watanabe M, Mihama K. Gas reaction on the specimen. In: Bargmann W, Möllenstedt G, Niehrs H, Peters D, Ruska E, Wolpers C, editors. Verhandlungen physikalisch-technischer teil. Berlin: Springer Berlin, Heidelberg; 1960. pp. 80-2.
16. Hashimoto H, Kumao A, Eto T, Fujiwara K. Drops of oxides on tungsten oxide needles and nuclei of dendritic crystals. Journal of Crystal Growth 1970;7:113-6.
17. Venables JA, Ball DJ, Thomas GJ. An electron microscope liquid helium stage for use with accessories. J Sci Instrum 1968;1:121-6.
18. Bostanjoglo O, Lischke B. Elektronenmikroskopische untersuchungen am kondensierten wasserstoff, stickstoff und sauerstoff. Zeitschrift für Naturforschung A 1967;22:1620-2.
19. Honjo G, Kitamura N, Shimaoka K, Mihama K. Low temperature specimen method for electron diffraction and electron microscopy. J Phys Soc Jpn 1956;11:527-36.
20. Venables JA. Liquid helium cooled tilting stage for an electron microscope. Review of Scientific Instruments 1963;34:582-3.
21. Piercy GR, Gilbert RW, Howe LM. A liquid helium cooled finger for the Siemens electron microscope. J Sci Instrum 1963;40:487-9.
22. Goringe MJ, Valdrè U. Use of the bright field shadow technique to study superconductivity in the electron microscope. Philosophical Magazine 1963;8:1999-2003.
23. Boersch H, Bostanjoglo O, Niedrig H. Temperaturabhängigkeit der transparenz dünner schichten für schnelle elektronen. Z Physik 1964;180:407-14.
24. Boersch H, Niedrig H, Yersin H. Temperature dependence of large angle electron scattering at polycrystalline gold foils. Physics Letters A 1967;25:195-6.
25. Watanabe H, Ishikawa I. A liquid helium cooled stage for an electron microscope. Jpn J Appl Phys 1967;6:83.
26. Heide HG, Urban K. A novel specimen stage permitting high-resolution electron microscopy at low temperatures. J Phys E: Sci Instrum 1972;5:803-8.
27. Chlebek HG, Curzon AE. A liquid helium stage for the Philips EM 300 electron microscope. J Phys E: Sci Instrum 1973;6:1105-6.
28. Nogales E. The development of cryo-EM into a mainstream structural biology technique. Nat Methods 2016;13:24-7.
29. Fernández-Morán H. Low-temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing with liquid helium II. Ann N Y Acad Sci 1960;85:689-713.
30. Taylor KA, Glaeser RM. Electron diffraction of frozen, hydrated protein crystals. Science 1974;186:1036-7.
31. Chiu W. Electron microscopy of frozen, hydrated biological specimens. Annu Rev Biophys Biophys Chem 1986;15:237-57.
32. Dubochet J, Mcdowall A. Vitrification of pure water for electron microscopy. Journal of Microscopy 1981;124:3-4.
33. Dubochet J, Adrian M, Chang JJ, et al. Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 1988;21:129-228.
34. Adrian M, Dubochet J, Lepault J, McDowall AW. Cryo-electron microscopy of viruses. Nature 1984;308:32-6.
35. Bostanjoglo O, Röhkel K. Superferromagnetism in thin Gd and Gd-Au films. Phys Stat Sol (a) 1971;7:387-92.
36. Gai PL. In-situ environmental transmission electron microscopy. In: Kirkland A, Haigh S, Kroto H, O’brien P, Craighead H, editors. Nanocharacterisation. The Royal Society of Chemistry; 2007. pp. 268-290.
37. Gai PL, Boyes ED. Dynamic in situ experiments in a 1Å double aberration corrected environment. In: Luysberg M, Tillmann K, Weirich T, editors. EMC 2008 14th european microscopy congress 1–5 september 2008, Aachen, Germany. Berlin: Springer Berlin Heidelberg; 2008. pp. 479-80.
38. Kamino T, Saka H. A newly developed high resolution hot stage and its application to materials characterization. Microsc Microanal Microstruct 1993;4:127-35.
39. Gai PL, Boyes ED. Advances in atomic resolution in situ environmental transmission electron microscopy and 1A aberration corrected in situ electron microscopy. Microsc Res Tech 2009;72:153-64.
40. Tai K, Liu Y, Dillon SJ. In situ cryogenic transmission electron microscopy for characterizing the evolution of solidifying water ice in colloidal systems. Microsc Microanal 2014;20:330-7.
41. Bell D, Zandbergen H.
42. Hotz MT, Corbin G, Dellby N, et al. Optimizing the Nion STEM for in-situ experiments. Microsc Microanal 2018;24:1132-3.
43. Goodge BH, Bianco E, Schnitzer N, Zandbergen HW, Kourkoutis LF. Atomic-resolution cryo-STEM across continuously variable temperatures. Microsc Microanal 2020;26:439-46.
44. Fernandez-Leiro R, Scheres SH. Unravelling biological macromolecules with cryo-electron microscopy. Nature 2016;537:339-46.
45. Ross FM. Opportunities and challenges in liquid cell electron microscopy. Science 2015;350:aaa9886.
46. Dubochet J. On the development of electron cryo-microscopy (nobel lecture). Angew Chem Int Ed Engl 2018;57:10842-6.
47. Cui Y, Kourkoutis L. Imaging sensitive materials, interfaces, and quantum materials with cryogenic electron microscopy. Acc Chem Res 2021;54:3619-20.
48. Zachman MJ, Tu Z, Choudhury S, Archer LA, Kourkoutis LF. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries. Nature 2018;560:345-9.
49. Fan Z, Zhang L, Baumann D, et al. In situ transmission electron microscopy for energy materials and devices. Adv Mater 2019;31:e1900608.
50. Liang J, Xiao X, Chou TM, Libera M. Analytical cryo-scanning electron microscopy of hydrated polymers and microgels. Acc Chem Res 2021;54:2386-96.
51. Gong X, Gnanasekaran K, Chen Z, et al. Insights into the structure and dynamics of metal-organic frameworks via transmission electron microscopy. J Am Chem Soc 2020;142:17224-35.
52. Li Y, Zhou W, Li Y, et al. Unravelling atomic structure and degradation mechanisms of organic-inorganic halide perovskites by cryo-EM. Joule 2019;3:2854-66.
53. Hart JL, Cha JJ. Seeing quantum materials with cryogenic transmission electron microscopy. Nano Lett 2021;21:5449-52.
54. El Baggari I, Savitzky BH, Admasu AS, et al. Nature and evolution of incommensurate charge order in manganites visualized with cryogenic scanning transmission electron microscopy. Proc Natl Acad Sci U S A 2018;115:1445-50.
55. Bianco E, Kourkoutis LF. Atomic-resolution cryogenic scanning transmission electron microscopy for quantum materials. Acc Chem Res 2021;54:3277-87.
56. Jiang T, Ni F, Recalde-benitez O, et al. Observation of dislocation-controlled domain nucleation and domain-wall pinning in single-crystal BaTiO3. Applied Physics Letters 2023;123:202901.
57. Ignatans R, Damjanovic D, Tileli V. Local hard and soft pinning of 180° domain walls in BaTiO3 probed by in situ transmission electron microscopy. Phys Rev Materials 2020;4:104403.
58. Ignatans R, Damjanovic D, Tileli V. Individual barkhausen pulses of ferroelastic nanodomains. Phys Rev Lett 2021;127:167601.
60. O’Reilly T, Holsgrove KM, Zhang X, et al. The effect of chemical environment and temperature on the domain structure of free-standing BaTiO3 via in situ STEM. Adv Sci (Weinh) 2023;10:e2303028.
61. Tsuda K, Sano R, Tanaka M. Nanoscale local structures of rhombohedral symmetry in the orthorhombic and tetragonal phases of BaTiO3 studied by convergent-beam electron diffraction. Phys Rev B 2012;86:214106.
62. Mun J, Peng W, Roh CJ, et al. In situ cryogenic HAADF-STEM observation of spontaneous transition of ferroelectric polarization domain structures at low temperatures. Nano Lett 2021;21:8679-86.
63. Tyukalova E, Vimal Vas J, Ignatans R, et al. Challenges and applications to operando and in situ TEM imaging and spectroscopic capabilities in a cryogenic temperature range. Acc Chem Res ;2021:3125-35.
64. Wang YL, He ZB, Damjanovic D, Tagantsev AK, Deng GC, Setter N. Unusual dielectric behavior and domain structure in rhombohedral phase of BaTiO3 single crystals. Journal of Applied Physics 2011;110:014101.
65. Recalde-Benitez O, Pivak Y, Jiang T, et al. Weld-free mounting of lamellae for electrical biasing operando TEM. Ultramicroscopy 2024;260:113939.
66. Pivak Y, Sun H, van Omme T, et al. Development of a stable cryogenic in situ biasing system for atomic resolution (s)TEM. Microsc Microanal 2023;29:1695.
67. Omme JT, Zakhozheva M, Spruit RG, Sholkina M, Pérez Garza HH. Advanced microheater for in situ transmission electron microscopy; enabling unexplored analytical studies and extreme spatial stability. Ultramicroscopy 2018;192:14-20.
68. Krisper R, Lammer J, Pivak Y, Fisslthaler E, Grogger W. The performance of EDXS at elevated sample temperatures using a MEMS-based in situ TEM heating system. Ultramicroscopy 2022;234:113461.
69. Yang Y, Vijayan S, Yesibolati MN, Jinschek JR. Standard calibrations and prediction for thermal gradients during in situ transmission electron microscopy heating experiments. Microscopy and Microanalysis 2024;30:ozae044.824.
70. Vijayan S, Wang R, Kong Z, Jinschek JR. Quantification of extreme thermal gradients during in situ transmission electron microscope heating experiments. Microsc Res Tech 2022;85:1527-37.
71. Molina-Luna L, Wang S, Pivak Y, et al. Enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion. Nat Commun 2018;9:4445.
72. Merz WJ. The electric and optical behavior of BaTiO3 single-domain crystals. Phys Rev 1949;76:1221.
73. Zhuo F, Zhou X, Gao S, et al. Anisotropic dislocation-domain wall interactions in ferroelectrics. Nat Commun 2022;13:6676.
74. Fujii I, Trolier-mckinstry S. Temperature dependence of dielectric nonlinearity of BaTiO3 ceramics. Microstructures 2023:3.
75. Hershkovitz A, Johann F, Barzilay M, Hendler Avidor A, Ivry Y. Mesoscopic origin of ferroelectric-ferroelectric transition in BaTiO3: orthorhombic-to-tetragonal domain evolution. Acta Materialia 2020;187:186-90.
76. Zhuo F, Zhou X, Gao S, et al. Intrinsic-strain engineering by dislocation imprint in bulk ferroelectrics. Phys Rev Lett 2023;131:016801.
77. Wu H, Zhu J, Zhang T. Pseudo-first-order phase transition for ultrahigh positive/negative electrocaloric effects in perovskite ferroelectrics. Nano Energy 2015;16:419-27.
78. Li YL, Hu SY, Choudhury S, et al. Influence of interfacial dislocations on hysteresis loops of ferroelectric films. Journal of Applied Physics 2008;104:104110.
79. Zhang S, Li F, Jiang X, Kim J, Luo J, Geng X. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers - a review. Prog Mater Sci 2015;68:1-66.
80. Marton P, Rychetsky I, Hlinka J. Domain walls of ferroelectric BaTiO3 within the ginzburg-landau-devonshire phenomenological model. Phys Rev B 2010;81:144125.
81. Chou J, Lin M, Lu H. Ferroelectric domains in pressureless-sintered barium titanate. Acta Materialia 2000;48:3569-79.
82. Williams DB, Carter CB. Transmission electron microscopy: a textbook for materials science. 2nd ed. Springer; 2008.
83. Höfling M, Zhou X, Riemer LM, et al. Control of polarization in bulk ferroelectrics by mechanical dislocation imprint. Science 2021;372:961-4.
84. Everhardt AS, Damerio S, Zorn JA, et al. Periodicity-doubling cascades: direct observation in ferroelastic materials. Phys Rev Lett 2019;123:087603.
85. Acosta M, Novak N, Rojas V, et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Applied Physics Reviews 2017;4:041305.
86. Qiu C, Wang B, Zhang N, et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 2020;577:350-4.
87. Nataf GF, Guennou M, Gregg JM, et al. Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials. Nat Rev Phys 2020;2:634-48.
88. Hlinka J, Márton P. Phenomenological model of a 90° domain wall in BaTiO3-type ferroelectrics. Phys Rev B 2006;74:104104.
89. Erhart J, Cao W. Permissible symmetries of multi-domain configurations in perovskite ferroelectric crystals. Journal of Applied Physics 2003;94:3436-45.
90. Gao J, Xue D, Liu W, Zhou C, Ren X. Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications. Actuators 2017;6:24.
91. Ren X. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat Mater 2004;3:91-4.
92. Zhuo F, Zhou X, Dietrich F, et al. Dislocation density-mediated functionality in single-crystal BaTiO3. Adv Sci (Weinh) 2024;11:e2403550.
93. Jiang T, Zhuo F, Recalde-benitez O, Pivak Y, Molina-luna L. Atomic-scale analysis of dislocation-controlled domain nucleation and domain-wall pinning in single-crystal BaTiO3 by cryo/heating MEMS-based in situ TEM. Microscopy and Microanalysis 2024;30:ozae044.675.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.