1. Nejat, P.; Jomehzadeh, F.; Taheri, M. M.; Gohari, M.; Abd. Majid, M. Z. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy. Rev. 2015, 43, 843-62.
2. Li, H.; Du, H.; Luo, H.; Wang, H.; Zhu, W.; Zhou, Y. Recent developments in metal nanocluster-based catalysts for improving photocatalytic CO2 reduction performance. Microstructures 2023, 3, 2023024.
3. Zou, J.; Liang, G.; Zhang, F.; Zhang, S.; Davey, K.; Guo, Z. Revisiting the role of discharge products in Li-CO2 batteries. Adv. Mater. 2023, 35, e2210671.
4. Ye, Z.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. Rational design of MOF-based materials for next-generation rechargeable batteries. Nanomicro. Lett. 2021, 13, 203.
5. Guo, Y.; Cao, Y.; Lu, J.; Zheng, X.; Deng, Y. The concept, structure, and progress of seawater metal-air batteries. Microstructures 2023, 3, 2023034.
6. Liang, S.; Zheng, L. J.; Song, L. N.; Wang, X. X.; Tu, W. B.; Xu, J. J. Accelerated confined mass transfer of MoS2 1D nanotube in photo-assisted metal-air batteries. Adv. Mater. 2024, 36, e2307790.
7. Fetrow, C. J.; Carugati, C.; Zhou, X. D.; Wei, S. Electrochemistry of metal-CO2 batteries: opportunities and challenges. Energy. Storage. Mater. 2022, 45, 911-33.
8. Rabiee, H.; Yan, P.; Wang, H.; Zhu, Z.; Ge, L. Electrochemical CO2 reduction integrated with membrane/adsorption-based CO2 capture in gas-diffusion electrodes and electrolytes. EcoEnergy 2024, 2, 3-21.
9. Ahmadiparidari, A.; Warburton, R. E.; Majidi, L.; et al. A long-cycle-life lithium-CO2 battery with carbon neutrality. Adv. Mater. 2019, 31, e1902518.
10. Liu, B.; Sun, Y.; Liu, L.; et al. Recent advances in understanding Li-CO2 electrochemistry. Energy. Environ. Sci. 2019, 12, 887-922.
11. Chen, J.; Chen, X. Y.; Liu, Y.; et al. Recent progress of transition metal-based catalysts as cathodes in O2/H2O-involved and pure Li-CO2 batteries. Energy. Environ. Sci. 2023, 16, 792-829.
12. Takechi, K.; Shiga, T.; Asaoka, T. A Li-O2/CO2 battery. Chem. Commun. 2011, 47, 3463-5.
13. Xu, S.; Das, S. K.; Archer, L. A. The Li-CO2 battery: a novel method for CO2 capture and utilization. RSC. Adv. 2013, 3, 6656.
14. Liu, F.; Zhou, J.; Wang, Y.; et al. Rational engineering of 2D materials as advanced catalyst cathodes for high-performance metal-carbon dioxide batteries. Small. Struct. 2023, 4, 2300025.
15. Ma, Z.; Yuan, X.; Li, L.; et al. A review of cathode materials and structures for rechargeable lithium-air batteries. Energy. Environ. Sci. 2015, 8, 2144-98.
16. Zhang, Z.; Xiao, X.; Zhu, X.; Tan, P. Addressing transport issues in non-aqueous Li-air batteries to achieving high electrochemical performance. Electrochem. Energy. Rev. 2023, 6, 157.
17. Zhang, Z.; Xiao, X.; Yan, A.; Sun, K.; Yu, J.; Tan, P. A quantitative understanding of electron and mass transport coupling in lithium-oxygen batteries. Adv. Energy. Mater. 2023, 13, 2302816.
18. Goodarzi, M.; Nazari, F.; Illas, F. Assessing the performance of cobalt phthalocyanine nanoflakes as molecular catalysts for Li-promoted oxalate formation in Li-CO2-oxalate batteries. J. Phys. Chem. C. 2018, 122, 25776-84.
19. Németh, K.; Srajer, G. CO2/oxalate cathodes as safe and efficient alternatives in high energy density metal-air type rechargeable batteries. RSC. Adv. 2014, 4, 1879-85.
20. Ma, S.; Lu, Y.; Yao, H.; Si, Y.; Liu, Q.; Li, Z. Regulating the nucleation of Li2CO3 and C by anchoring Li-containing carbonaceous species towards high performance Li-CO2 batteries. J. Energy. Chem. 2022, 65, 472-9.
21. Qiao, Y.; Yi, J.; Wu, S.; et al. Li-CO2 electrochemistry: a new strategy for CO2 fixation and energy storage. Joule 2017, 1, 359-70.
22. Angamuthu, R.; Byers, P.; Lutz, M.; Spek, A. L.; Bouwman, E. Electrocatalytic CO2 conversion to oxalate by a copper complex. Science 2010, 327, 313-5.
23. Ye, Z.; Sun, H.; Gao, H.; et al. Intrinsic activity regulation of metal chalcogenide electrocatalysts for lithium-sulfur batteries. Energy. Storage. Mater. 2023, 60, 102855.
24. Li, W.; Zhang, M.; Sun, X.; et al. Boosting a practical Li-CO2 battery through dimerization reaction based on solid redox mediator. Nat. Commun. 2024, 15, 803.
25. Wang, Y. F.; Song, L. N.; Zheng, L. J.; Wang, Y.; Wu, J. Y.; Xu, J. J. Reversible carbon dioxide/lithium oxalate regulation toward advanced aprotic lithium carbon dioxide battery. Angew. Chem. Int. Ed. 2024, 63, e202400132.
26. Zhao, Z.; Su, Y.; Peng, Z. Probing lithium carbonate formation in trace-O2-assisted aprotic Li-CO2 batteries using in situ surface-enhanced Raman spectroscopy. J. Phys. Chem. Lett. 2019, 10, 322-8.
27. Xue, H.; Gong, H.; Lu, X.; et al. Aqueous formate-based Li-CO2 battery with low charge overpotential and high working voltage. Adv. Energy. Mater. 2021, 11, 2101630.
28. Zhang, F.; Co, A. C. Direct evidence of local pH change and the role of alkali cation during CO2 electroreduction in aqueous media. Angew. Chem. Int. Ed. 2020, 59, 1674-81.
29. Hou, Y.; Wang, J.; Liu, L.; et al. Mo2C/CNT: an efficient catalyst for rechargeable Li-CO2 batteries. Adv. Funct. Mater. 2017, 27, 1700564.
30. Tang, Z.; Yuan, M.; Zhu, H.; et al. Promoting the performance of Li-CO2 batteries via constructing three-dimensional interconnected K+ doped MnO2 nanowires networks. Front. Chem. 2021, 9, 670612.
31. Pipes, R.; He, J.; Bhargav, A.; Manthiram, A. Freestanding vanadium nitride nanowire membrane as an efficient, carbon-free gas diffusion cathode for Li-CO2 batteries. Energy. Storage. Mater. 2020, 31, 95-104.
32. Xie, H.; Zhang, B.; Hu, C.; Xiao, N.; Liu, D. Boosting Li-CO2 battery performances by creating holey structure on CNT cathodes. Electrochim. Acta. 2022, 417, 140310.
33. Qi, G.; Zhang, J.; Chen, L.; Wang, B.; Cheng, J. Binder-free MoN nanofibers catalysts for flexible 2-electron oxalate-based Li-CO2 batteries with high energy efficiency. Adv. Funct. Mater. 2022, 32, 2112501.
34. Chen, Y.; Fan, Z.; Wang, J.; et al. Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: a crystal phase-dependent study. J. Am. Chem. Soc. 2020, 142, 12760-6.
35. Zhou, J.; Wang, T.; Chen, L.; et al. Boosting the reaction kinetics in aprotic lithium-carbon dioxide batteries with unconventional phase metal nanomaterials. Proc. Natl. Acad. Sci. USA. 2022, 119, e2204666119.
36. Guo, L.; Tan, L.; Xu, A.; et al. Highly efficient two-dimensional Ag2Te cathode catalyst featuring a layer structure derived catalytic anisotropy in lithium-oxygen batteries. Energy. Storage. Mater. 2022, 50, 96-104.
37. Wang, Y.; Zhou, J.; Lin, C.; et al. Decreasing the overpotential of aprotic Li-CO2 batteries with the in-plane alloy structure in ultrathin 2D Ru-based nanosheets. Adv. Funct. Mater. 2022, 32, 2202737.
38. Fan, L.; Shen, H.; Ji, D.; et al. Biaxially compressive strain in Ni/Ru core/shell nanoplates boosts Li-CO2 batteries. Adv. Mater. 2022, 34, e2204134.
39. Zhao, W.; Yang, Y.; Deng, Q.; et al. Toward an understanding of bimetallic MXene solid-solution in binder-free electrocatalyst cathode for advanced Li-CO2 batteries. Adv. Funct. Mater. 2023, 33, 2210037.
40. Yu, W.; Shen, Z.; Yoshii, T.; et al. Hierarchically porous and minimally stacked graphene cathodes for high-performance lithium-oxygen batteries. Adv. Energy. Mater. 2024, 14, 2303055.
41. Zhou, X.; Zhang, A.; Chen, B.; et al. Synthesis of 2H/fcc-heterophase AuCu nanostructures for highly efficient electrochemical CO2 Reduction at industrial current densities. Adv. Mater. 2023, 35, e2304414.
42. Pipes, R.; He, J.; Bhargav, A.; Manthiram, A. Efficient Li-CO2 batteries with molybdenum disulfide nanosheets on carbon nanotubes as a catalyst. ACS. Appl. Energy. Mater. 2019, 2, 8685-94.
43. Jiang, C.; Zhang, Y.; Zhang, M.; et al. Exfoliation of covalent organic frameworks into MnO2-loaded ultrathin nanosheets as efficient cathode catalysts for Li-CO2 batteries. Cell. Rep. Phys. Sci. 2021, 2, 100392.
44. Xing, Y.; Wang, K.; Li, N.; et al. Ultrathin RuRh alloy nanosheets enable high-performance lithium-CO2 battery. Matter 2020, 2, 1494-508.
45. Xu, Y.; Gong, H.; Ren, H.; et al. Highly efficient Cu-porphyrin-based metal-organic framework nanosheet as cathode for high-rate Li-CO2 battery. Small 2022, 18, e2203917.
46. Dong, L. Z.; Zhang, Y.; Lu, Y. F.; et al. A well-defined dual Mn-site based metal-organic framework to promote CO2 reduction/evolution in Li-CO2 batteries. Chem. Commun. 2021, 57, 8937-40.
47. Li, S.; Dong, Y.; Zhou, J.; et al. Carbon dioxide in the cage: manganese metal-organic frameworks for high performance CO2 electrodes in Li-CO2 batteries. Energy. Environ. Sci. 2018, 11, 1318-25.
48. Wang, J. H.; Li, S.; Chen, Y.; et al. Phthalocyanine based metal-organic framework ultrathin nanosheet for efficient photocathode toward light-assisted Li-CO2 battery. Adv. Funct. Mater. 2022, 32, 2210259.
49. Zhang, Y.; Zhong, R. L.; Lu, M.; et al. Single metal site and versatile transfer channel merged into covalent organic frameworks facilitate high-performance Li-CO2 batteries. ACS. Cent. Sci. 2021, 7, 175-82.
50. Huang, S.; Chen, D.; Meng, C.; et al. CO2 Nanoenrichment and nanoconfinement in cage of imine covalent organic frameworks for high-performance CO2 cathodes in Li-CO2 batteries. Small 2019, 15, e1904830.
51. Li, X.; Wang, H.; Chen, Z.; et al. Covalent-organic-framework-based Li-CO2 batteries. Adv. Mater. 2019, 31, e1905879.
52. Chen, Y.; Li, X. Y.; Chen, Z.; et al. Efficient multicarbon formation in acidic CO2 reduction via tandem electrocatalysis. Nat. Nanotechnol. 2024, 19, 311-8.
53. Cheng, Z.; Fang, Y.; Yang, Y.; et al. Hydrogen-bonded organic framework to upgrade cycling stability and rate capability of Li-CO2 batteries. Angew. Chem. Int. Ed. 2023, 62, e202311480.
54. Yang, S.; Qiao, Y.; He, P.; et al. A reversible lithium-CO2 battery with Ru nanoparticles as a cathode catalyst. Energy. Environ. Sci. 2017, 10, 972-8.
55. Baek, K.; Jeon, W. C.; Woo, S.; et al. Synergistic effect of quinary molten salts and ruthenium catalyst for high-power-density lithium-carbon dioxide cell. Nat. Commun. 2020, 11, 456.
56. Zhang, K.; Li, J.; Zhai, W.; et al. Boosting cycling stability and rate capability of Li-CO2 batteries via synergistic photoelectric effect and plasmonic interaction. Angew. Chem. Int. Ed. 2022, 61, e202201718.
57. Wang, Z.; Liu, B.; Yang, X.; et al. Dual catalytic sites of alloying effect bloom CO2 catalytic conversion for highly stable Li-CO2 battery. Adv. Funct. Mater. 2023, 33, 2213931.
58. Cheng, Z.; Wu, Z.; Chen, J.; et al. Mo2N-ZrO2 heterostructure engineering in freestanding carbon nanofibers for upgrading cycling stability and energy efficiency of Li-CO2 batteries. Small 2023, 19, e2301685.
59. Deng, Q.; Yang, Y.; Mao, C.; et al. Electronic state modulation and reaction pathway regulation on necklace-like MnOx-CeO2@polypyrrole hierarchical cathode for advanced and flexible Li-CO2 batteries. Adv. Energy. Mater. 2022, 12, 2103667.
60. Zhai, Y.; Tong, H.; Deng, J.; et al. Super-assembled atomic Ir catalysts on Te substrates with synergistic catalytic capability for Li-CO2 batteries. Energy. Storage. Mater. 2021, 43, 391-401.
61. Zhang, X.; Wang, T.; Yang, Y.; et al. Breaking the stable triangle of carbonate via W-O bonds for Li-CO2 batteries with low polarization. ACS. Energy. Lett. 2021, 6, 3503-10.
62. Ye, Z.; Jiang, Y.; Yang, T.; Li, L.; Wu, F.; Chen, R. Engineering catalytic CoSe-ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions. Adv. Sci. 2022, 9, e2103456.
63. Ye, Z.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. Self-assembly of 0D-2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv. Mater. 2021, 33, e2101204.
64. Jiang, Y.; Wu, F.; Ye, Z.; et al. Confining CoTe2-ZnTe heterostructures on petal-like nitrogen-doped carbon for fast and robust sodium storage. Chem. Eng. J. 2023, 451, 138430.
65. Lian, Z.; Lu, Y.; Wang, C.; et al. Single-atom Ru implanted on Co3O4 nanosheets as efficient dual-catalyst for Li-CO2 batteries. Adv. Sci. 2021, 8, e2102550.
66. Hao, Y.; Jiang, Y.; Zhao, L.; et al. Bimetallic antimony-vanadium oxide nanoparticles embedded in graphene for stable lithium and sodium storage. ACS. Appl. Mater. Interfaces. 2021, 13, 21127-37.
67. Wang, H.; Xie, K.; You, Y.; et al. Realizing interfacial electronic interaction within ZnS quantum Dots/N-rGO heterostructures for efficient Li-CO2 batteries. Adv. Energy. Mater. 2019, 9, 1901806.
68. Wang, K.; Liu, D.; Liu, L.; et al. Isolated metalloid tellurium atomic cluster on nitrogen-doped carbon nanosheet for high-capacity rechargeable lithium-CO2 battery. Adv. Sci. 2023, 10, e2205959.
69. Jiang, Y.; Wu, F.; Ye, Z.; et al. Superimposed effect of hollow carbon polyhedron and interconnected graphene network to achieve CoTe2 anode for fast and ultralong sodium storage. J. Power. Sources. 2023, 554, 232174.
70. Hu, C.; Gong, L.; Xiao, Y.; et al. High-performance, long-life, rechargeable Li-CO2 batteries based on a 3D holey graphene cathode implanted with single iron atoms. Adv. Mater. 2020, 32, e1907436.
71. Jin, Y.; Liu, Y.; Song, L.; et al. Interfacial engineering in hollow NiS2/FeS2-NSGA heterostructures with efficient catalytic activity for advanced Li-CO2 battery. Chem. Eng. J. 2022, 430, 133029.
72. Liu, Y.; Zhao, S.; Wang, D.; et al. Toward an understanding of the reversible Li-CO2 batteries over metal-N4-functionalized graphene electrocatalysts. ACS. Nano. 2022, 16, 1523-32.
73. Guo, C.; Zhang, F.; Han, X.; et al. Intrinsic descriptor guided noble metal cathode design for Li-CO2 battery. Adv. Mater. 2023, 35, e2302325.
74. Liu, L.; Qin, Y.; Wang, K.; et al. Rational design of nanostructured metal/C interface in 3D self-supporting cellulose carbon aerogel facilitating high-performance Li-CO2 batteries. Adv. Energy. Mater. 2022, 12, 2103681.
75. Ye, Z.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. Enhanced catalytic conversion of polysulfide using 1D CoTe and 2D MXene for heat-resistant and lean-electrolyte Li-S batteries. Chem. Eng. J. 2022, 430, 132734.
76. Zhang, X.; Wang, C.; Li, H.; et al. High performance Li-CO2 batteries with NiO-CNT cathodes. J. Mater. Chem. A. 2018, 6, 2792-6.
77. Chen, C. J.; Huang, C. S.; Huang, Y. C.; et al. Catalytically active site identification of molybdenum disulfide as gas cathode in a nonaqueous Li-CO2 battery. ACS. Appl. Mater. Interfaces. 2021, 13, 6156-67.
78. Liu, W.; Zhai, P.; Li, A.; et al. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat. Commun. 2022, 13, 1877.
79. Liu, Q.; Hu, Z.; Li, L.; et al. Facile synthesis of birnessite δ-MnO2 and carbon nanotube composites as effective catalysts for Li-CO2 batteries. ACS. Appl. Mater. Interfaces. 2021, 13, 16585-93.
80. Xing, Y.; Yang, Y.; Li, D.; et al. Crumpled Ir nanosheets fully covered on porous carbon nanofibers for long-life rechargeable lithium-CO2 batteries. Adv. Mater. 2018, 30, e1803124.
81. Xiao, Y.; Du, F.; Hu, C.; et al. High-performance Li-CO2 batteries from free-standing, binder-free, bifunctional three-dimensional carbon catalysts. ACS. Energy. Lett. 2020, 5, 916-21.
82. Guan, D. H.; Wang, X. X.; Li, M. L.; et al. Light/electricity energy conversion and storage for a hierarchical porous In2S3@CNT/SS cathode towards a flexible Li-CO2 battery. Angew. Chem. Int. Ed. 2020, 59, 19518-24.
83. Shi, Z.; Li, M.; Sun, J.; Chen, Z. Defect engineering for expediting Li-S chemistry: strategies, mechanisms, and perspectives. Adv. Energy. Mater. 2021, 11, 2100332.
84. Wang, C.; Lu, Y.; Lu, S.; et al. Boosting Li-CO2 battery performances by engineering oxygen vacancy on NiO nanosheets array. J. Power. Sources. 2021, 495, 229782.
85. Li, X.; Zhang, J.; Qi, G.; Cheng, J.; Wang, B. Vertically aligned N-doped carbon nanotubes arrays as efficient binder-free catalysts for flexible Li-CO2 batteries. Energy. Storage. Mater. 2021, 35, 148-56.
86. Chen, B.; Wang, D.; Tan, J.; et al. Designing electrophilic and nucleophilic dual centers in the ReS2 plane toward efficient bifunctional catalysts for Li-CO2 batteries. J. Am. Chem. Soc. 2022, 144, 3106-16.
87. Wang, Y.; Chu, F.; Zeng, J.; et al. Single atom catalysts for fuel cells and rechargeable batteries: principles, advances, and opportunities. ACS. Nano. 2021, 15, 210-39.
88. Zhou, A. W.; Wang, D. S.; Li, Y. D. Hollow microstructural regulation of single-atom catalysts for optimized electrocatalytic performance. Microstructures 2022, 2, 2022005.
89. Zhong, D. C.; Gong, Y. N.; Zhang, C.; Lu, T. B. Dinuclear metal synergistic catalysis for energy conversion. Chem. Soc. Rev. 2023, 52, 3170-214.
90. Liu, H.; Li, J.; Arbiol, J.; Yang, B.; Tang, P. Catalytic reactivity descriptors of metal-nitrogen-doped carbon catalysts for electrocatalysis. EcoEnergy 2023, 1, 154-85.
91. Cheng, J.; Bai, Y.; Lian, Y.; et al. Homogenizing Li2CO3 nucleation and growth through high-density single-atomic Ru loading toward reversible Li-CO2 reaction. ACS. Appl. Mater. Interfaces. 2022, 14, 18561-9.
92. Rho, Y. J.; Kim, B.; Shin, K.; Henkelman, G.; Ryu, W. H. Atomically miniaturized bi-phase IrOx/Ir catalysts loaded on N-doped carbon nanotubes for high-performance Li-CO2 batteries. J. Mater. Chem. A. 2022, 10, 19710-21.
93. Zheng, H.; Li, H.; Zhang, Z.; et al. Dispersed nickel phthalocyanine molecules on carbon nanotubes as cathode catalysts for Li-CO2 batteries. Small 2023, 19, e2302768.
94. Zhu, K.; Li, X.; Choi, J.; et al. Single-atom cadmium-N4 sites for rechargeable Li-CO2 batteries with high capacity and ultra-long lifetime. Adv. Funct. Mater. 2023, 33, 2213841.
95. Wang, M.; Yao, Y.; Tian, Y.; et al. Atomically dispersed manganese on carbon substrate for aqueous and aprotic CO2 electrochemical reduction. Adv. Mater. 2023, 35, e2210658.
96. Zhou, L.; Wang, H.; Zhang, K.; et al. Fast decomposition of Li2CO3/C actuated by single-atom catalysts for Li-CO2 batteries. Sci. China. Mater. 2021, 64, 2139-47.
97. Ding, J.; Xue, H.; Xiao, R.; et al. Atomically dispersed Fe-Nx species within a porous carbon framework: an efficient catalyst for Li-CO2 batteries. Nanoscale 2022, 14, 4511-8.
98. Shi, Y.; Wei, B.; Legut, D.; Du, S.; Francisco, J. S.; Zhang, R. Highly stable single-atom modified MXenes as cathode-active bifunctional catalysts in Li-CO2 battery. Adv. Funct. Mater. 2022, 32, 2210218.
99. Xu, Y.; Gong, H.; Song, L.; et al. A highly efficient and free-standing copper single atoms anchored nitrogen-doped carbon nanofiber cathode toward reliable Li-CO2 batteries. Mater. Today. Energy. 2022, 25, 100967.
100. Xu, Y.; Jiang, C.; Gong, H.; et al. Single atom site conjugated copper polyphthalocyanine assisted carbon nanotubes as cathode for reversible Li-CO2 batteries. Nano. Res. 2022, 15, 4100-7.
101. Li, J.; Zhang, K.; Zhao, Y.; et al. High-efficiency and stable Li-CO2 battery enabled by carbon nanotube/carbon nitride heterostructured photocathode. Angew. Chem. Int. Ed. 2022, 61, e202114612.
102. Deng, Q.; Yang, Y.; Yin, K.; Yi, J.; Zhou, Y.; Zhang, Y. Boosting active species Ru-O-Zr/Ce construction at the interface of phase-transformed zirconia-ceria isomerism toward advanced catalytic cathodes for Li-CO2 batteries. Adv. Energy. Mater. 2023, 13, 2302398.
103. Wu, C.; Qi, G.; Zhang, J.; Cheng, J.; Wang, B. Porous Mo3P/Mo nanorods as efficient mott-schottky cathode catalysts for low polarization Li-CO2 battery. Small 2023, 19, e2302078.
104. Jian, T.; Ma, W.; Hou, J.; Ma, J.; Xu, C.; Liu, H. From Ru to RuAl intermetallic/Ru heterojunction: enabling high reversibility of the CO2 redox reaction in Li-CO2 battery based on lowered interface thermodynamic energy barrier. Nano. Energy. 2023, 118, 108998.
105. Zhang, P. F.; Zhang, J. Y.; Sheng, T.; et al. Synergetic effect of Ru and NiO in the electrocatalytic decomposition of Li2CO3 to enhance the performance of a Li-CO2/O2 battery. ACS. Catal. 2020, 10, 1640-51.
106. Hao, Y.; Hu, F.; Zhu, S.; et al. MXene-regulated metal-oxide interfaces with modified intermediate configurations realizing nearly 100% CO2 electrocatalytic conversion. Angew. Chem. Int. Ed. 2023, 62, e202304179.
107. Lu, B.; Min, Z.; Xiao, X.; et al. Recycled tandem catalysts promising ultralow overpotential Li-CO2 batteries. Adv. Mater. 2024, 36, e2309264.
108. Zou, L.; Li, R.; Wang, Z.; Yu, F.; Chi, B.; Pu, J. Synergistic effect of Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ heterostructure and oxygen vacancy engineering for high-performance Li-CO2 batteries. Electrochim. Acta. 2021, 395, 139209.
109. Lin, J.; Ding, J.; Wang, H.; et al. Boosting energy efficiency and stability of Li-CO2 battery via synergy between Ru atom cluster and single atom Ru-N4 site in electrocatalyst cathode. Adv. Mater. 2022, 34, 2200559.
110. Lu, B.; Wu, X.; Xiao, X.; et al. Energy band engineering guided design of bidirectional catalyst for reversible Li-CO2 batteries. Adv. Mater. 2024, 36, e2308889.
111. Liu, Y.; Shu, P.; Zhang, M.; et al. Uncovering the geometry activity of spinel oxides in Li-CO2 battery reactions. ACS. Energy. Lett. 2024, 9, 2173-81.
112. Liu, Y.; Zhang, Z.; Tan, J.; et al. Deciphering the contributing motifs of reconstructed cobalt (II) sulfides catalysts in Li-CO2 batteries. Nat. Commun. 2024, 15, 2167.
113. Liu, L.; Shen, S.; Zhao, N.; et al. Revealing the indispensable role of in situ electrochemically reconstructed Mn(II)/Mn(III) in improving the performance of lithium-carbon dioxide batteries. Adv. Mater. 2024, 36, e2403229.
114. Khurram, A.; He, M.; Gallant, B. M. Tailoring the discharge reaction in Li-CO2 batteries through incorporation of CO2 capture chemistry. Joule 2018, 2, 2649-66.
115. Wang, X. G.; Wang, C.; Xie, Z.; et al. Improving electrochemical performances of rechargeable Li-CO2 batteries with an electrolyte redox mediator. ChemElectroChem 2017, 4, 2145-9.
116. Pipes, R.; Bhargav, A.; Manthiram, A. Phenyl disulfide additive for solution-mediated carbon dioxide utilization in Li-CO2 batteries. Adv. Energy. Mater. 2019, 9, 1900453.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.