REFERENCES

1. Fagerlund F, Illangasekare TH, Phenrat T, Kim HJ, Lowry GV. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. J Contam Hydrol 2012;131:9-28.

2. Qian L, Chen Y, Ouyang D, et al. Field demonstration of enhanced removal of chlorinated solvents in groundwater using biochar-supported nanoscale zero-valent iron. Sci Total Environ 2020;698:134215.

3. Lien HL, Zhang WX. Hydrodechlorination of chlorinated ethanes by nanoscale Pd/Fe bimetallic particles. J Environ Eng 2005;131:4-10.

4. Lin KS, Mdlovu NV, Chen CY, Chiang CL, Dehvari K. Degradation of TCE, PCE, and 1,2-DCE DNAPLs in contaminated groundwater using polyethylenimine-modified zero-valent iron nanoparticles. J Clean Prod 2018;175:456-66.

5. Xu W, Li Z, Shi S, et al. Carboxymethyl cellulose stabilized and sulfidated nanoscale zero-valent iron: characterization and trichloroethene dechlorination. Appl Catal B Environ 2020;262:118303.

6. Huang J, Yi S, Zheng C, Lo IMC. Persulfate activation by natural zeolite supported nanoscale zero-valent iron for trichloroethylene degradation in groundwater. Sci Total Environ 2019;684:351-9.

7. Gu M, Farooq U, Lu S, Zhang X, Qiu Z, Sui Q. Degradation of trichloroethylene in aqueous solution by rGO supported nZVI catalyst under several oxic environments. J Hazard Mater 2018;349:35-44.

8. Idrees A, Shan A, Ali M, et al. Highly efficient degradation of trichloroethylene in groundwater based on persulfate activation by polyvinylpyrrolidone functionalized Fe/Cu bimetallic nanoparticles. J Environ Chem Eng 2021;9:105341.

9. Bhattacharjee S, Ghoshal S. Optimal design of sulfidated nanoscale zerovalent iron for enhanced trichloroethene degradation. Environ Sci Technol 2018;52:11078-86.

10. He F, Li Z, Shi S, et al. Dechlorination of excess trichloroethene by bimetallic and sulfidated nanoscale zero-valent iron. Environ Sci Technol 2018;52:8627-37.

11. Mo Y, Xu J, Zhu L. Molecular structure and sulfur content affect reductive dechlorination of chlorinated ethenes by sulfidized nanoscale zerovalent iron. Environ Sci Technol 2022;56:5808-19.

12. Zhang N, Luo J, Blowers P, Farrell J. Understanding trichloroethylene chemisorption to iron surfaces using density functional theory. Environ Sci Technol 2008;42:2015-20.

13. Lim DH, Lastoskie CM, Soon A, Becker U. Density functional theory studies of chloroethene adsorption on zerovalent iron. Environ Sci Technol 2009;43:1192-8.

14. Lim DH, Lastoskie CM. Density functional theory studies on the relative reactivity of chloroethenes on zerovalent iron. Environ Sci Technol 2009;43:5443-8.

15. Bin Q, Lin B, Zhu K, et al. Superior trichloroethylene removal from water by sulfide-modified nanoscale zero-valent iron/graphene aerogel composite. J Environ Sci 2020;88:90-102.

16. Brumovský M, Micić V, Oborná J, Filip J, Hofmann T, Tunega D. Iron nitride nanoparticles for rapid dechlorination of mixed chlorinated ethene contamination. J Hazard Mater 2023;442:129988.

17. Brumovský M, Oborná J, Micić V, et al. Iron nitride nanoparticles for enhanced reductive dechlorination of trichloroethylene. Environ Sci Technol 2022;56:4425-36.

18. Cao Z, Li H, Lowry GV, et al. Unveiling the role of sulfur in rapid defluorination of florfenicol by sulfidized nanoscale zero-valent iron in water under ambient conditions. Environ Sci Technol 2021;55:2628-38.

19. Chen J, Dong H, Tian R, Li R, Xie Q. Remediation of trichloroethylene-contaminated groundwater by sulfide-modified nanoscale zero-valent iron supported on biochar: investigation of critical factors. Water Air Soil Pollut 2020;231:4797.

20. Fan D, O’Brien Johnson G, Tratnyek PG, Johnson RL. Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR). Environ Sci Technol 2016;50:9558-65.

21. Li X, Zeng L, Wen N, Deng D. Critical roles of sulfidation solvent in controlling surface properties and the dechlorination reactivity of S-nZVI. J Hazard Mater 2021;417:126014.

22. Wang B, Dong H, Li L, et al. Influence of different co-contaminants on trichloroethylene removal by sulfide-modified nanoscale zero-valent iron. Chem Eng J 2020;381:122773.

23. Zhan J, Ma M, Zhang X, et al. Comparison of trichloroethylene dechlorination in seawater by sulfidated nanoscale zero-valent iron particles prepared by two methods. J Environ Chem Eng 2023;11:110242.

24. White JJ, Hinsch JJ, Wu Z, Tian Y, Bennett WW, Wang Y. Sulfidation impacts on the hydrophobicity of stepped iron surfaces. Adv Energy Sustain Res 2023;4:2300055.

25. Cao Z, Li H, Xu X, Xu J. Correlating surface chemistry and hydrophobicity of sulfidized nanoscale zerovalent iron with its reactivity and selectivity for denitration and dechlorination. Chem Eng J 2020;394:124876.

26. Dong H, Zhang C, Deng J, et al. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution. Water Res 2018;135:1-10.

27. Garcia AN, Zhang Y, Ghoshal S, He F, O’Carroll DM. Recent advances in sulfidated zerovalent iron for contaminant transformation. Environ Sci Technol 2021;55:8464-83.

28. Xu J, Cao Z, Zhou H, et al. Sulfur dose and sulfidation time affect reactivity and selectivity of post-sulfidized nanoscale zerovalent iron. Environ Sci Technol 2019;53:13344-52.

29. Brumovský M, Filip J, Malina O, et al. Core-shell Fe/FeS nanoparticles with controlled shell thickness for enhanced trichloroethylene removal. ACS Appl Mater Interfaces 2020;12:35424-34.

30. Xu J, Wang Y, Weng C, et al. Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties. Environ Sci Technol 2019;53:5936-45.

31. White JJ, Hinsch JJ, Bennett WW, Wang Y. Theoretical understanding of water adsorption on stepped iron surfaces. Appl Surf Sci 2022;605:154650.

32. White JJ, Liu J, Hinsch JJ, Wang Y. Theoretical understanding of the properties of stepped iron surfaces with van der Waals interaction corrections. Phys Chem Chem Phys 2021;23:2649-57.

33. Xu J, Li H, Lowry GV. Sulfidized nanoscale zero-valent iron: tuning the properties of this complex material for efficient groundwater remediation. ACC Mater Res 2021;2:420-31.

34. Xu J, Avellan A, Li H, et al. Sulfur loading and speciation control the hydrophobicity, electron transfer, reactivity, and selectivity of sulfidized nanoscale zerovalent iron. Adv Mater 2020;32:e1906910.

35. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter 1993;47:558-61.

36. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996;6:15-50.

37. Wang V, Xu N, Liu J, Tang G, Geng W. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput Phys Commun 2021;267:108033.

38. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI. van der Waals density functional for general geometries. Phys Rev Lett 2004;92:246401.

39. Thonhauser T, Cooper VR, Li S, Puzder A, Hyldgaard P, Langreth DC. Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond. Phys Rev B 2007;76:125112.

40. Klimeš J, Bowler DR, Michaelides A. Van der Waals density functionals applied to solids. Phys Rev B 2011;83:195131.

41. Lee K, Murray ÉD, Kong L, Lundqvist BI, Langreth DC. Higher-accuracy van der Waals density functional. Phys Rev B 2010;82:081101.

42. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999;59:1758-75.

43. Mathew K, Sundararaman R, Letchworth-Weaver K, Arias TA, Hennig RG. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J Chem Phys 2014;140:084106.

44. Mathew K, Kolluru VSC, Mula S, Steinmann SN, Hennig RG. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J Chem Phys 2019;151:234101.

45. Martínez L, Andrade R, Birgin EG, Martínez JM. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 2009;30:2157-64.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/