REFERENCES

1. Ashcroft, N. W. Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 1968, 21, 1748-9.

2. Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. Microscopic theory of superconductivity. Phys. Rev. 1957, 106, 162-4.

3. Zhao, W.; Song, H.; Du, M.; et al. Pressure-induced high-temperature superconductivity in ternary Y-Zr-H compounds. Phys. Chem. Chem. Phys. 2023, 25, 5237-43.

4. Edalati, K.; Bachmaier, A.; Beloshenko, V. A.; et al. Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Mater. Res. Lett. 2022, 10, 163-256.

5. Kang, S.; Zheng, H.; Liu, T.; et al. A ferromagnetically coupled Fe42 cyanide-bridged nanocage. Nat. Commun. 2015, 6, 5955.

6. Dalladay-Simpson, P.; Howie, R. T.; Gregoryanz, E. Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature 2016, 529, 63-7.

7. Loubeyre, P.; Occelli, F.; Dumas, P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature 2020, 577, 631-5.

8. Ashcroft, N. W. Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 2004, 92, 187002.

9. Du, M.; Zhao, W.; Cui, T.; Duan, D. Compressed superhydrides: the road to room temperature superconductivity. J. Phys. Condens. Matter. 2022, 34, 173001.

10. Goncharenko, I.; Eremets, M. I.; Hanfland, M.; et al. Pressure-induced hydrogen-dominant metallic state in aluminum hydride. Phys. Rev. Lett. 2008, 100, 045504.

11. Eremets, M. I.; Trojan, I. A.; Medvedev, S. A.; Tse, J. S.; Yao, Y. Superconductivity in hydrogen dominant materials: silane. Science 2008, 319, 1506-9.

12. Pickard, C. J.; Needs, R. J. Ab initio random structure searching. J. Phys. Condens. Matter. 2011, 23, 053201.

13. Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B. 2010, 82, 094116.

14. Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. CALYPSO: a method for crystal structure prediction. Comput. Phys. Commun. 2012, 183, 2063-70.

15. Gao, H.; Wang, J.; Han, Y.; Sun, J. Enhancing crystal structure prediction by decomposition and evolution schemes based on graph theory. Fundam. Res. 2021, 1, 466-71.

16. Oganov, A. R.; Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 2006, 124, 244704.

17. Oganov, A. R.; Lyakhov, A. O.; Valle, M. How evolutionary crystal structure prediction works-and why. ACC. Chem. Res. 2011, 44, 227-37.

18. Lyakhov, A. O.; Oganov, A. R.; Stokes, H. T.; Zhu, Q. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun. 2013, 184, 1172-82.

19. Xia, K.; Gao, H.; Liu, C.; et al. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search. Sci. Bull. 2018, 63, 817-24.

20. Duan, D.; Liu, Y.; Tian, F.; et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep. 2014, 4, 6968.

21. Duan, D.; Huang, X.; Tian, F.; et al. Pressure-induced decomposition of solid hydrogen sulfide. Phys. Rev. B. 2015, 91, 180502.

22. Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.; Ksenofontov, V.; Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 2015, 525, 73-6.

23. Einaga, M.; Sakata, M.; Ishikawa, T.; et al. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 2016, 12, 835-8.

24. Peng, F.; Sun, Y.; Pickard, C. J.; Needs, R. J.; Wu, Q.; Ma, Y. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Phys. Rev. Lett. 2017, 119, 107001.

25. Liu, H.; Naumov, I. I.; Hoffmann, R.; Ashcroft, N. W.; Hemley, R. J. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. USA. 2017, 114, 6990-5.

26. Drozdov, A. P.; Kong, P. P.; Minkov, V. S.; et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 2019, 569, 528-31.

27. Somayazulu, M.; Ahart, M.; Mishra, A. K.; et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 2019, 122, 027001.

28. Hong, F.; Yang, L.; Shan, P.; et al. Superconductivity of lanthanum superhydride investigated using the standard four-probe configuration under high pressures. Chinese. Phys. Lett. 2020, 37, 107401.

29. Troyan, I. A.; Semenok, D. V.; Kvashnin, A. G.; et al. Anomalous high-temperature superconductivity in YH6. Adv. Mater. 2021, 33, e2006832.

30. Kong, P.; Minkov, V. S.; Kuzovnikov, M. A.; et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure. Nat. Commun. 2021, 12, 5075.

31. Ma, L.; Wang, K.; Xie, Y.; et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa. Phys. Rev. Lett. 2022, 128, 167001.

32. Jiang, Q.; Zhang, Z.; Song, H.; et al. Ternary superconducting hydrides stabilized via Th and Ce elements at mild pressures. Fundam. Res. 2024, 4, 550-6.

33. Errea, I.; Calandra, M.; Pickard, C. J.; et al. Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system. Nature 2016, 532, 81-4.

34. Errea, I.; Belli, F.; Monacelli, L.; et al. Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride. Nature 2020, 578, 66-9.

35. Chen, W.; Semenok, D. V.; Huang, X.; et al. High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 megabar. Phys. Rev. Lett. 2021, 127, 117001.

36. Semenok, D. V.; Kvashnin, A. G.; Ivanova, A. G.; et al. Superconductivity at 161 K in thorium hydride ThH10: synthesis and properties. Mater. Today. 2020, 33, 36-44.

37. Sun, Y.; Lv, J.; Xie, Y.; Liu, H.; Ma, Y. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure. Phys. Rev. Lett. 2019, 123, 097001.

38. Zhang, Z.; Cui, T.; Hutcheon, M. J.; et al. Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure. Phys. Rev. Lett. 2022, 128, 047001.

39. Song, Y.; Bi, J.; Nakamoto, Y.; et al. Stoichiometric ternary superhydride LaBeH8 as a new template for high-temperature superconductivity at 110 K under 80 GPa. Phys. Rev. Lett. 2023, 130, 266001.

40. Heil, C.; di, C. S.; Bachelet, G. B.; Boeri, L. Superconductivity in sodalite-like yttrium hydride clathrates. Phys. Rev. B. 2019, 99, 220502.

41. Xie, H.; Duan, D.; Shao, Z.; et al. High-temperature superconductivity in ternary clathrate CaYH12 under high pressures. J. Phys. Condens. Matter. 2019, 31, 245404.

42. Liang, X.; Bergara, A.; Wang, L.; et al. Potential high- Tc superconductivity in CaYH12 under pressure. Phys. Rev. B. 2019, 99, 100505.

43. Zhao, W.; Duan, D.; Du, M.; et al. Pressure-induced high-Tc superconductivity in the ternary clathrate system Y-Ca-H. Phys. Rev. B. 2022, 106, 014521.

44. Chen, W.; Huang, X.; Semenok, D. V.; et al. Enhancement of superconducting properties in the La-Ce-H system at moderate pressures. Nat. Commun. 2023, 14, 2660.

45. Bi, J.; Nakamoto, Y.; Zhang, P.; et al. Giant enhancement of superconducting critical temperature in substitutional alloy (La,Ce)H9. Nat. Commun. 2022, 13, 5952.

46. Semenok, D. V.; Troyan, I. A.; Ivanova, A. G.; et al. Superconductivity at 253 K in lanthanum-yttrium ternary hydrides. Mater. Today. 2021, 48, 18-28.

47. Ma, T.; Zhang, Z.; Du, M.; et al. High-throughput calculation for superconductivity of sodalite-like clathrate ternary hydrides MXH12 at high pressure. Mater. Today. Phys. 2023, 38, 101233.

48. Hooper, J.; Terpstra, T.; Shamp, A.; Zurek, E. Composition and constitution of compressed strontium polyhydrides. J. Phys. Chem. C. 2014, 118, 6433-47.

49. Wang, Y.; Wang, H.; Tse, J. S.; Iitaka, T.; Ma, Y. Structural morphologies of high-pressure polymorphs of strontium hydrides. Phys. Chem. Chem. Phys. 2015, 17, 19379-85.

50. Semenok, D. V.; Kruglov, I. A.; Savkin, I. A.; Kvashnin, A. G.; Oganov, A. R. On distribution of superconductivity in metal hydrides. Curr. Opin. Solid. State. Mater. Sci. 2020, 24, 100808.

51. Tanaka, K.; Tse, J. S.; Liu, H. Electron-phonon coupling mechanisms for hydrogen-rich metals at high pressure. Phys. Rev. B. 2017, 96, 100502.

52. Semenok, D. V.; Chen, W.; Huang, X.; et al. Sr-doped superionic hydrogen glass: synthesis and properties of SrH22. Adv. Mater. 2022, 34, e2200924.

53. Chen, Y.; Liu, Z.; Lin, Z.; et al. High Tc superconductivity in layered hydrides XH15 (X = Ca, Sr, Y, La) under high pressures. Front. Phys. 2022, 17, 63502.

54. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. Condens. Matter. 1996, 54, 11169-86.

55. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-8.

56. Perdew, J. P.; Wang, Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys. Rev. B. Condens. Matter. 1992, 46, 12947-54.

57. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B. Condens. Matter. 1994, 50, 17953-79.

58. Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 2016, 37, 1030-5.

59. Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-typeSiO2 at high pressures. Phys. Rev. B. 2008, 78, 134106.

60. Giannozzi, P.; Baroni, S.; Bonini, N.; et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 2009, 21, 395502.

61. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. Condens. Matter. 1990, 41, 7892-5.

62. Appel, J. Transition temperature of d-f -band superconductors. Phys. Rev. B. 1973, 8, 1079-87.

63. Wu, Y.; Lazic, P.; Hautier, G.; Persson, K.; Ceder, G. First principles high throughput screening of oxynitrides for water-splitting photocatalysts. Energy. Environ. Sci. 2013, 6, 157-68.

64. Hinuma, Y.; Hatakeyama, T.; Kumagai, Y.; et al. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis. Nat. Commun. 2016, 7, 11962.

65. Song, H.; Zhang, Z.; Cui, T.; Pickard, C. J.; Kresin, V. Z.; Duan, D. High Tc superconductivity in heavy rare earth hydrides. Chinese. Phys. Lett. 2021, 38, 107401.

66. Lifshitz, I. M. Anomalies of electron characteristics in the high pressure region. 1960. Available from: https://www.osti.gov/biblio/4173345 [Last accessed on 15 Jul 2024].

67. Yang, K.; Sun, H.; Chen, H.; Chen, L.; Li, B.; Lu, W. Stable structures and superconducting properties of Ca-La-H compounds under pressure. J. Phys. Condens. Matter. 2022, 34, 355401.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/