REFERENCES
1. Zhang, Z.; Li, X.; Yin, J.; et al. Emerging hydrovoltaic technology. Nat. Nanotechnol. 2018, 13, 1109-19.
3. Wang, X.; Lin, F.; Wang, X.; et al. Hydrovoltaic technology: from mechanism to applications. Chem. Soc. Rev. 2022, 51, 4902-27.
5. Zan, G.; Wu, Q. Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Adv. Mater. 2016, 28, 2099-147.
6. Li, S.; Zhao, K.; Shin, E. A.; Kim, G.; Zan, G. Passive interfacial cooling sparks a major leap in solar-driven water and power cogeneration. Clean. Energy. Sci. Technol. 2024, 2, 140.
7. Zan, G.; Li, S.; Chen, P.; Dong, K.; Wu, Q.; Wu, T. Mesoporous cubic nanocages assembled by coupled monolayers with 100% theoretical capacity and robust cycling. ACS. Cent. Sci. 2024, 10, 1283-94.
8. Pu, S.; Zan, G.; Zhou, H.; et al. Sustaining 500,000 folding cycles through bioinspired stress dispersion design in sodium-ion batteries. Angew. Chem. Int. Ed. 2025, 64, e202417589.
9. Zan, G.; Li, S.; Zhao, K.; et al. Emerging bioinspired hydrovoltaic electricity generators. Energy. Environ. Sci. 2025, 18, 53-96.
10. Jin, R.; Lou, Y.; Wang, Z. Deposition technologies of perovskite layer enabling large-area photovoltaic modules. Energy. Mater. Dev. 2024, 2, 9370030.
11. Li, Y.; Zhang, D.; Qiao, W.; et al. Nanostructured heterogeneous photocatalyst materials for green synthesis of valuable chemicals. Chem. Synth. 2022, 2, 9.
12. Park, S. M.; Wei, M.; Lempesis, N.; et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 2023, 624, 289-94.
13. Wang, Z. L.; Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242-6.
14. Yang, Q.; Yang, S.; Qiu, P.; et al. Flexible thermoelectrics based on ductile semiconductors. Science 2022, 377, 854-8.
15. Zahid, M.; Savla, N.; Pandit, S.; et al. Microbial desalination cell: desalination through conserving energy. Desalination 2022, 521, 115381.
16. Zhao, K.; Li, S.; Zan, G.; et al. Moisture-driven energy generation by vertically structured polymer aerogel on water-collecting gel. Nano. Energy. 2024, 126, 109645.
17. Xu, J.; Wang, P.; Bai, Z.; et al. Sustainable moisture energy. Nat. Rev. Mater. 2024, 9, 722-37.
18. Wang, J.; Cao, X.; Cui, X.; et al. Recent advances of green electricity generation: potential in solar interfacial evaporation system. Adv. Mater. 2024, 36, e2311151.
19. Liu, Z.; Liu, C.; Chen, Z.; et al. Recent advances in two-dimensional materials for hydrovoltaic energy technology. Exploration 2023, 3, 20220061.
20. Shin, E.; Kim, G.; Zhao, K.; et al. Environmentally sustainable moisture energy harvester with chemically networked cellulose nanofiber. Energy. Environ. Sci. 2024, 17, 7165-81.
21. Zan, G.; Jiang, W.; Kim, H.; et al. A core-shell fiber moisture-driven electric generator enabled by synergetic complex coacervation and built-in potential. Nat. Commun. 2024, 15, 10056.
22. Peng, X.; Chen, L.; Liu, Y.; et al. Strain engineering of two-dimensional materials for energy storage and conversion applications. Chem. Synth. 2023, 3, 47.
23. Zhang, M.; Zhang, K.; Wei, W.; Yuan, H.; Chang, J.; Hao, Y. Arginine modification of hybrid cobalt/nitrogen Ti3C2Tx MXene and its application as a sulfur host for lithium-sulfur batteries. Microstructures 2024, 4, 2024013.
24. Dai, X.; Wang, Z.; Wang, X.; et al. MXene-based sodium-sulfur batteries: synthesis, applications and perspectives. Rare. Met. 2025, 44, 1522-55.
25. Wang, X.; Yang, Q.; Meng, X.; Zhen, M.; Hu, Z.; Shen, B. Research status and perspectives of MXene-based materials for aqueous zinc-ion batteries. Rare. Met. 2024, 43, 1867-85.
26. Naguib, M.; Kurtoglu, M.; Presser, V.; et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248-53.
28. Anasori, B.; Gogotsi, Y. MXenes: trends, growth, and future directions. Graphene. 2D. Mater. 2022, 7, 75-9.
30. VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.
32. Liu, Y.; Shi, Z.; Liang, T.; et al. The mechanism of room-temperature oxidation of a HF-etched Ti3C2Tx MXene determined via environmental transmission electron microscopy and molecular dynamics. InfoMat 2024, 6, e12536.
33. Ma, H.; Fang, H.; Li, J.; Li, Z.; Fang, X.; Wang, H. Transmittance contrast-induced photocurrent: a general strategy for self-powered photodetectors based on MXene electrodes. InfoMat 2024, 6, e12540.
34. Cheng, X.; Guan, R.; Wu, Z.; Sun, Y.; Che, W.; Shang, Q. Establishing carrier transport channels based on Ti-S bonds and enhancing the photocatalytic performance of MXene quantum dots-ZnIn2S4 for ammonia synthesis. InfoMat 2024, 6, e12535.
35. Chen, Y.; Dai, Y.; Bodepudi, S. C.; et al. High-sensitive and fast MXene/silicon photodetector for single-pixel X-ray imaging. InfoMat 2024, 6, e12596.
36. Mathis, T. S.; Maleski, K.; Goad, A.; et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS. Nano. 2021, 15, 6420-9.
37. Jia, L.; Zhou, S.; Ahmed, A.; et al. Tuning MXene electrical conductivity towards multifunctionality. Chem. Eng. J. 2023, 475, 146361.
38. Li, J.; Hao, J.; Wang, R.; et al. Ultra-stable cycling of organic carboxylate molecule hydrogen bonded with inorganic Ti3C2Tx MXene with improved redox kinetics for sodium-ion batteries. Battery. Energy. 2024, 3, 20230033.
39. Usman, K. A. S.; Zhang, J.; Marquez, K. P.; et al. Recent advances and opportunities in MXene-based liquid crystals. InfoMat 2024, 6, e12516.
40. He, G.; Ning, F.; Liu, X.; et al. High-performance and long-term stability of MXene/PEDOT:PSS-decorated cotton yarn for wearable electronics applications. Adv. Fiber. Mater. 2024, 6, 367-86.
41. Duan, S.; Lin, Y.; Shi, Q.; et al. Highly sensitive and mechanically stable MXene textile sensors for adaptive smart data glove embedded with near-sensor edge intelligence. Adv. Fiber. Mater. 2024, 6, 1541-53.
42. Feng, W.; Zou, L.; Lan, C.; E, S.; Pu, X. Core-sheath CNT@MXene fibers toward absorption-dominated electromagnetic interference shielding fabrics. Adv. Fiber. Mater. 2024, 6, 1657-68.
43. Zhao, F.; Cheng, H.; Zhang, Z.; Jiang, L.; Qu, L. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351-7.
44. Lü, J.; Ren, G.; Hu, Q.; Rensing, C.; Zhou, S. Microbial biofilm-based hydrovoltaic technology. Trends. Biotechnol. 2023, 41, 1155-67.
45. Zhang, H.; He, N.; Wang, B.; et al. High-performance, highly stretchable, flexible moist-electric generators via molecular engineering of hydrogels. Adv. Mater. 2023, 35, e2300398.
46. Luo, P.; Cao, Y.; Han, B.; et al. Nanosheets array-induced nanofluidic channels toward efficient primary batteries-coordinated textiles. Nano. Energy. 2023, 118, 108988.
47. Zhao, K.; Lee, J. W.; Yu, Z. G.; et al. Humidity-tolerant moisture-driven energy generator with MXene aerogel-organohydrogel bilayer. ACS. Nano. 2023, 17, 5472-85.
48. Li, Y.; Wu, Y.; Shao, B.; et al. Asymmetric charged conductive porous films for electricity generation from water droplets via capillary infiltrating. ACS. Appl. Mater. Interfaces. 2021, 13, 17902-9.
49. Xue, Y. B.; Cao, Y. M.; Luo, P.; et al. Asymmetric sandwich Janus Structure for high-performance textile-based thermos-hydroelectric generators toward human health monitoring. Adv. Funct. Mater. 2024, 34, 2310485.
50. Zhao, Q.; Jiang, Y.; Duan, Z.; et al. A Nb2CTx/sodium alginate-based composite film with neuron-like network for self-powered humidity sensing. Chem. Eng. J. 2022, 438, 135588.
51. Kim, G.; Lee, J. W.; Zhao, K.; et al. A deformable complementary moisture and tribo energy harvester. Energy. Environ. Sci. 2024, 17, 134-48.
52. Liu, C.; Wan, T.; Guan, P.; et al. Unveil the triple roles of water molecule on power generation of MXene Derived TiO2 based moisture electric generator. Adv. Energy. Mater. 2024, 14, 2400590.
53. He, P.; Guo, R.; Hu, K.; et al. Tough and super-stretchable conductive double network hydrogels with multiple sensations and moisture-electric generation. Chem. Eng. J. 2021, 414, 128726.
54. Yin, J.; Liu, N.; Jia, P.; et al. MXene-enhanced environmentally stable organohydrogel ionic diode toward harvesting ultralow-frequency mechanical energy and moisture energy. SusMat 2023, 3, 859-76.
55. Li, P.; Su, N.; Wang, Z.; Qiu, J. A Ti3C2Tx MXene-based energy-harvesting soft actuator with self-powered humidity sensing and real-time motion tracking capability. ACS. Nano. 2021, 15, 16811-8.
56. Wei, J.; Jia, S.; Ma, C.; et al. Nacre-inspired composite film with mechanical robustness for highly efficient actuator powered by humidity gradients. Chem. Eng. J. 2023, 451, 138565.
57. Cai, C.; Chen, Y.; Cheng, F.; Wei, Z.; Zhou, W.; Fu, Y. Biomimetic dual absorption-adsorption networked MXene aerogel-pump for integrated water harvesting and power generation system. ACS. Nano. 2024, 18, 4376-87.
58. Tong, X.; Chen, G.; Ahommed, M. S.; et al. A carbon nanofiber/Ti3C2Tx/carboxymethyl cellulose composite-based highly sensitive, reversible, directionally controllable humidity actuator and generator via continuous track-inspired self-assembly. J. Mater. Chem. A. 2024, 12, 33003-14.
59. Feng, Y.; Wang, R.; Ge, T. Full passive MOF water harvester in a real desert climate. Device 2023, 1, 100054.
60. Jin, Y.; Ghaffour, N. Boosting atmospheric water harvesting with a solar-driven humidity-adaptable membrane device. Device 2024, 2, 100427.
61. Qin, L.; Cao, H. Two ways to cool via passive sorption with atmospheric water. Device 2023, 1, 100187.
63. Yu, J.; Deng, F.; Liu, H.; Wang, C.; Zou, H.; Wang, R. Passive and continuous moisture pump for humidity regulation via simultaneous water adsorption and desorption. Device 2024, 2, 100429.
64. Wilson, C. T.; Cha, H.; Zhong, Y.; Li, A. C.; Lin, E.; El, F. B. Design considerations for next-generation sorbent-based atmospheric water-harvesting devices. Device 2023, 1, 100052.
65. Xue, G.; Xu, Y.; Ding, T.; et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317-21.
66. Zhang, X.; Zhang, X.; Fan, X.; et al. Fabrication and study of a high output power flexible fabric hydrovoltaic generator. J. Mater. Chem. A. 2023, 11, 26173-82.
67. Bae, J.; Kim, M. S.; Oh, T.; et al. Towards Watt-scale hydroelectric energy harvesting by Ti3C2Tx-based transpiration-driven electrokinetic power generators. Energy. Environ. Sci. 2022, 15, 123-35.
68. Su, H.; Usman, K. A. S.; Nilghaz, A.; et al. Efficient energy generation from a sweat-powered, wearable, MXene-based hydroelectric nanogenerator. Device 2024, 2, 100356.
69. Xia, H.; Zhou, W.; Qu, X.; et al. Electricity generated by upstream proton diffusion in two-dimensional nanochannels. Nat. Nanotechnol. 2024, 19, 1316-22.
70. Zhang, J.; Li, Z.; Meng, T.; et al. Monolithic all-weather solar-thermal interfacial membrane evaporator. Chem. Eng. J. 2022, 450, 137893.
71. Che, X.; Zhang, W.; Long, L.; et al. Mildly peeling off and encapsulating large MXene nanosheets with rigid biologic fibrils for synchronization of solar evaporation and energy harvest. ACS. Nano. 2022, 16, 8881-90.
72. Peng, H.; Wang, D.; Fu, S. Unidirectionally driving nanofluidic transportation via an asymmetric textile pump for simultaneous salt-resistant solar desalination and drenching-induced power generation. ACS. Appl. Mater. Interfaces. 2021, 13, 38405-15.
73. Park, H.; Choi, G.; Yoon, S.; et al. MXene-enhanced ionovoltaic effect by evaporation and water infiltration in semiconductor nanochannels. ACS. Nano. 2024, 18, 13130-40.
74. Chen, Y.; He, J.; Ye, C.; Tang, S. Achieving ultrahigh voltage over 100 V and remarkable freshwater harvesting based on thermodiffusion enhanced hydrovoltaic generator. Adv. Energy. Mater. 2024, 14, 2400529.
75. Zhang, Z.; Wen, L.; Jiang, L. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 2021, 6, 622-39.
76. Hong, S.; Ming, F.; Shi, Y.; et al. Two-dimensional Ti3C2Tx MXene membranes as nanofluidic osmotic power generators. ACS. Nano. 2019, 13, 8917-25.
77. Chang, L.; Zhang, T.; Wang, F.; et al. Cation-selective Mo2TiC2Tx MXene membrane for osmotic energy harvesting. 2D. Mater. 2023, 10, 014009.
78. Qin, H.; Wu, H.; Zeng, S.; et al. Harvesting osmotic energy from proton gradients enabled by two-dimensional Ti3C2Tx MXene membranes. Adv. Membr. 2022, 2, 100046.
79. Dong, Q.; Liu, J.; Wang, Y.; He, J.; Zhai, J.; Fan, X. Ultrathin H-MXM as an "ion freeway" for high-performance osmotic energy conversion. Small. Methods. 2024, 8, e2301558.
80. Hong, S.; El-Demellawi, J. K.; Lei, Y.; et al. Porous Ti3C2Tx MXene membranes for highly efficient salinity gradient energy harvesting. ACS. Nano. 2022, 16, 792-800.
81. Wang, S.; Wang, Z.; Fan, Y.; Meng, X.; Wang, F.; Yang, N. Toward explicit anion transport nanochannels for osmotic power energy using positive charged MXene membrane via amination strategy. J. Membr. Sci. 2023, 668, 121203.
82. Ding, L.; Xiao, D.; Lu, Z.; et al. Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angew. Chem. Int. Ed. 2020, 59, 8720-6.
83. Hashemifar, F.; Esfandiar, A. Oppositely charged MXene fibers as a highly efficient osmotic power generator from sea and river water. J. Mater. Chem. A. 2022, 10, 24915-26.
84. Ding, L.; Zheng, M.; Xiao, D.; et al. Bioinspired Ti3C2Tx MXene-based ionic diode membrane for high-efficient osmotic energy conversion. Angew. Chem. Int. Ed. 2022, 61, e202206152.
85. Chen, Y.; Fang, M.; Ding, S.; et al. Bioinspired ultrastable MXene/PEDOT:PSS layered membrane for effective salinity gradient energy harvesting from organic solvents. ACS. Appl. Mater. Interfaces. 2022, 14, 23527-35.
86. Jang, J.; Kang, Y.; Kim, K.; et al. Concrete-structured Nafion@MXene/Cellulose acetate cation exchange membrane for reverse electrodialysis. J. Membr. Sci. 2022, 646, 120239.
87. Nazif, A.; Saljoughi, E.; Mousavi, S. M.; Karkhanechi, H. Embedding MXene nanosheets into cation exchange membranes to enhance power generation by reverse electrodialysis. Desalination 2023, 566, 116926.
88. Ren, Z.; Zhang, Q.; Yin, J.; et al. Enhancing osmotic energy harvesting through supramolecular design of oxygen-functionalized MXene with biomimetic ion channels. Adv. Funct. Mater. 2024, 34, 2404410.
89. Lin, X.; Liu, P.; Xin, W.; et al. Heterogeneous MXene/PS-b-P2VP nanofluidic membranes with controllable ion transport for osmotic energy conversion. Adv. Funct. Mater. 2021, 31, 2105013.
90. Duan, R.; Zhou, J.; Ma, X.; et al. High strength MXene/PBONF heterogeneous membrane with excellent ion selectivity for efficient osmotic energy conversion. Nano. Lett. 2023, 23, 11043-50.
91. Yuan, Z.; Zhou, B.; Yuan, K.; et al. High-aligned oppositely-charged nanocellulose/MXene aerogel membranes through synergy of directional freeze-casting and structural densification for osmotic-energy harvesting. Nano. Energy. 2024, 124, 109450.
92. Sun, Z.; Ahmad, M.; Gao, Z.; et al. Highly ionic conductive and mechanically strong MXene/CNF membranes for osmotic energy conversion. Sustain. Energy. Fuels. 2022, 6, 299-308.
93. Zhai, R.; Jiang, L.; Chen, Z.; et al. Kelp nanofiber-based composite membranes for highly efficient osmotic energy conversion. Adv. Funct. Mater. 2024, 34, 2313914.
94. Zhang, Z.; Yang, S.; Zhang, P.; Zhang, J.; Chen, G.; Feng, X. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 2019, 10, 2920.
95. Rao, J.; Lv, Z.; Yan, X.; et al. Nacre-inspired mechanically robust films for osmotic energy conversion. Adv. Funct. Mater. 2024, 34, 2309869.
96. Song, G.; Zhan, Y.; Hu, Y.; et al. Paper-mill waste reinforced nanofluidic membrane as high-performance osmotic energy generators. Adv. Funct. Mater. 2023, 33, 2214044.
97. Wang, B.; Li, J.; Wu, Z.; et al. Salinity power generation based biocompatible bacterial cellulose/MXene membrane for biological power source. Nano. Energy. 2022, 102, 107702.
98. Li, X.; He, J.; Lu, B.; Zhai, J. Soil-inspired multi-stage heterogeneous nanochannel membranes for enhanced osmotic energy conversion. Chem. Eng. J. 2024, 493, 152375.
99. Liu, P.; Zhou, T.; Yang, L.; et al. Synergy of light and acid-base reaction in energy conversion based on cellulose nanofiber intercalated titanium carbide composite nanofluidics. Energy. Environ. Sci. 2021, 14, 4400-9.
100. Xu, Y.; Zhang, K.; Chen, S.; et al. Two-dimensional lamellar MXene/three-dimensional network bacterial nanocellulose nanofiber composite Janus membranes as nanofluidic osmotic power generators. Electrochim. Acta. 2022, 412, 140162.
101. Wang, L.; Feng, Y.; Zhou, Y.; et al. Photo-induced active ion transport-assisted efficient ionic power harvesting from bioinspired Janus dual-field heterostructures. Adv. Funct. Mater. 2024, 34, 2314165.
102. Yang, G.; Qian, Y.; Wang, L.; et al. Advanced Janus membrane (MXene/CoAl-LDH) for efficient asymmetric ion transport and nanofluidic energy harvesting. Nano. Energy. 2023, 118, 108972.
103. Wang, F.; Wang, Z.; Meng, X.; et al. Advancing osmotic power generation using bioinspired MXene-based membrane via maze breaking. J. Membr. Sci. 2023, 686, 121975.
104. Wang, F.; Wang, Z.; Wang, S.; et al. Mechanically intensified and stabilized MXene membranes via the combination of graphene oxide for highly efficient osmotic power production. J. Membr. Sci. 2022, 647, 120280.
105. Yang, G.; Liu, D.; Chen, C.; et al. Stable Ti3C2Tx MXene-boron nitride membranes with low internal resistance for enhanced salinity gradient energy harvesting. ACS. Nano. 2021, 15, 6594-603.
106. Gao, H.; Chen, W.; Xu, C.; Liu, S.; Tong, X.; Chen, Y. Two-dimensional Ti3C2Tx MXene/GO hybrid membranes for highly efficient osmotic power generation. Environ. Sci. Technol. 2020, 54, 2931-40.
107. Van Nguyen, T.; Tekalgne, M.; Van Le, Q.; Van Tran, C.; Ahn, S. H.; Kim, S. Y. Recent progress and strategies of non-noble metal electrocatalysts based on MoS2/MOF for the hydrogen evolution reaction in water electrolysis: an overview. Microstructures 2024, 4, 2024046.
108. Huang, R.; Wang, Y.; You, D.; et al. MOF and its derivative materials modified lithium-sulfur battery separator: a new means to improve performance. Rare. Met. 2024, 43, 2418-43.
109. Su, Y.; Yuan, G.; Hu, J.; et al. Recent progress in strategies for preparation of metal-organic frameworks and their hybrids with different dimensions. Chem. Synth. 2023, 3, 1.
110. Mane, R. S.; Mane, S.; Somkuwar, V.; Thombre, N. V.; Patwardhan, A. V.; Jha, N. A novel hierarchically hybrid structure of MXene and bi-ligand ZIF-67 based trifunctional electrocatalyst for zinc-air battery and water splitting. Battery. Energy. 2023, 2, 20230019.
111. Zhou, J.; Hao, J.; Wu, R.; et al. Maximizing ion permselectivity in MXene/MOF nanofluidic membranes for high-efficient blue energy generation. Adv. Funct. Mater. 2022, 32, 2209767.
112. Yao, B.; Fang, Z.; Hu, Y.; Ye, Z.; Peng, X. Enhanced osmotic power generation through anodic electrodeposited MOFs@MXene heterostructured nanochannels. J. Membr. Sci. 2024, 709, 123116.
113. Yang, L.; Cao, L. N.; Li, S.; et al. MOFs/MXene nano-hierarchical porous structures for efficient ion dynamics. Nano. Energy. 2024, 129, 110076.
114. Lin, W.; Huang, T.; Bai, C.; et al. Novel ultrastable 2D MOF/MXene nanofluidic membrane with ultralow resistance for highly efficient osmotic power harvesting. Nano. Energy. 2024, 128, 109924.
115. Yang, Y.; Wang, D.; Liao, W.; et al. Arch-bridge photothermal fabric with efficient warp-direction water paths for continuous solar desalination. Adv. Fiber. Mater. 2024, 6, 1026-36.
116. Chang, J.; Pang, B.; Zhang, H.; Pang, K.; Zhang, M.; Yuan, J. MXene/Cellulose composite cloth for integrated functions (if-Cloth) in personal heating and steam generation. Adv. Fiber. Mater. 2024, 6, 252-63.
117. Liu, P.; Zhou, T.; Teng, Y.; et al. Light-induced heat driving active ion transport based on 2D MXene nanofluids for enhancing osmotic energy conversion. CCS. Chem. 2021, 3, 1325-35.
118. Xia, J.; Gao, H.; Pan, S.; et al. Light-augmented multi-ion interaction in MXene membrane for simultaneous water treatment and osmotic power generation. ACS. Nano. 2023, 17, 25269-78.
119. Yin, J.; Li, X.; Yu, J.; Zhang, Z.; Zhou, J.; Guo, W. Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotechnol. 2014, 9, 378-83.
120. Bai, Y.; Chen, C.; Liu, X.; Gao, J.; Sui, K. Power generation via sliding ionic droplets on nanolayered MXene films. ACS. Appl. Nano. Mater. 2022, 5, 4597-602.
121. Lao, J.; Wu, S.; Gao, J.; Dong, A.; Li, G.; Luo, J. Electricity generation based on a photothermally driven Ti3C2Tx MXene nanofluidic water pump. Nano. Energy. 2020, 70, 104481.
122. Si, P.; Li, M.; Wang, X.; et al. Origin of enhanced electricity generation on Magnéli phase titanium suboxide nanocrystal films. ACS. Appl. Energy. Mater. 2021, 4, 10877-85.
123. Li, S.; Zhao, K.; Zan, G.; et al. A biodegradable silk-based energy-generating skin with dual-mode tactile perception. Device 2025, 3, 100561.
124. Wu, H.; Zheng, H.; Qin, X.; et al. Drinking-bird-enabled triboelectric hydrovoltaic generator. Device 2024, 2, 100318.
125. Zhang, X.; Liang, J.; Ahmad, K.; Almutairi, Z.; Wan, C. Moisture-driven fabric-based generator for powering wearable electronics. Device 2024, 2, 100316.
126. Yan, H.; Qi, R.; Liu, Z.; Wang, H.; Dong, C.; Zhang, L. Unlocking the potential of hydrogel-electrode electrical double layer for high-performance moisture-enabled electric generators. Device 2025, 3, 100568.
127. Benedetto, G. A smart fabric nanogenerator combines energy sources to power devices. Device 2023, 1, 100177.
128. Zou, R.; Chen, H.; Pan, H.; et al. Self-powered and self-sensing wearable devices from a comfort perspective. Device 2024, 2, 100466.
129. Liu, C.; Wang, F.; Du, X. Self-powered electrostatic tweezer for adaptive object manipulation. Device 2024, 2, 100465.
130. Yin, J.; Kashyap, V.; Wang, S.; Xiao, X.; Tat, T.; Chen, J. Self-powered eye-computer interaction via a triboelectric nanogenerator. Device 2024, 2, 100252.
131. Wang, T.; Li, C.; Gao, Z.; et al. Triboelectric encoders for accurate and durable wearable motion sensing. Device 2024, 2, 100525.
132. Li, S.; Liu, A.; Qiu, W.; et al. An all-protein multisensory highly bionic skin. ACS. Nano. 2024, 18, 4579-89.
133. Wang, Y.; Qu, K.; Li, S.; et al. Fully degradable, highly elastomeric and adhesive silk fibroin electronic skin for microdynamic pressure monitoring. Chem. Eng. J. 2023, 469, 143920.
134. Li, S. Y.; Liu, J. R.; Wen, H.; Liu, X. Y.; Guo, W. X. Recent advances in silk-based wearable sensors. Acta. Phys. Sin. 2020, 69, 178703.